- page settings
- showhide sidebar
- showhide empty fields
- layout
- (too narrow)
- open all
- close all
Expression cluster » WBPaper00050015:ifg-1(RNAi)_downregulated
- Page Content
- Overview
- Associations
- Clustered data
- Genes
- References
- Regulation
- Tools
- Tree Display
- My WormBase
- My Favorites
- My Library
- Recent Activity
- Comments (0)
history logging is off
Tree Display
My Favorites
My Library
Overview
WBPaper00050015:ifg-1(RNAi)_downregulated
Algorithm:
Benjamini and Hochbergs method of false detection rate was used to etermine adjusted q-values (< 0.05) based on four biological replicates.References
- Filter by article type
1
Although certain methods of lowering and/or altering mRNA translation are associated with increased lifespan, the mechanisms underlying this effect remain largely unknown. We previously showed that the increased lifespan conferred by reducing expression of eukaryotic translation initiation factor 4G (eIF4G/IFG-1) enhances survival under starvation conditions while shifting protein expression toward factors involved with maintaining ER-dependent protein and lipid balance. In this study, we investigated changes in ER homeostasis and found that lower eIF4G/IFG-1 increased survival under conditions of ER stress. Enhanced survival required the ER stress sensor gene ire-1 and the ER calcium ATPase gene sca-1 and corresponded with increased translation of chaperones that mediate the ER unfolded protein response (UPR(ER) ). Surprisingly, the heat-shock transcription factor gene hsf-1 was also required for enhanced survival, despite having little or no influence on the ability of wild-type animals to survive ER stress. The requirement for hsf-1 led us to re-evaluate the role of eIF4G/IFG-1 on thermotolerance. Results show that lowering expression of this translation factor enhanced thermotolerance, but only after prolonged attenuation, the timing of which corresponded to increased transcription of heat-shock factor transcriptional targets. Results indicate that restricting overall translation through eIF4G/IFG-1 enhances ER and cytoplasmic proteostasis through a mechanism that relies heavily on hsf-1.
Rows per page: |
Associations
Life Stages | Definition |
---|---|
5-days post-L4 adult hermaphrodite Ce | At 20 Centigrade: 5-6 days after L4-adult molt. 8-9 days after first cleavage. |