-
[
J Med Genet,
2005]
In the past decade the molecular basis of many inherited syndromes has been unravelled. This article reviews the clinical and genetic aspects of inherited syndromes that are characterised by skin appendage neoplasms, including Cowden syndrome, Birt-Hogg-Dube syndrome, naevoid basal cell carcinoma syndrome, generalised basaloid follicular hamartoma syndrome, Bazex syndrome, Brooke-Spiegler syndrome, familial cylindromatosis, multiple familial trichoepitheliomas, and Muir-Torre syndrome.
-
[
Cell Mol Neurobiol,
2006]
1. Aims: In this review, we highlight the identification and analysis of molecules orchestrating dopamine (DA) signaling in the nematode Caenorhabditis elegans, focusing on recent characterizations of DA transporters and receptors.2. Methods: We illustrate the isolation and characterization of molecules important for C. elegans DA synthesis, packaging, reuptake and signaling and examine how mutations in these proteins are being exploited through in vitro and in vivo paradigms to yield novel insights of protein structure, DA signaling pathways and DA-supported behaviors.3. Results: DA signaling in the worm, as in man, arises by synaptic and nonsynaptic release from a small number of cells that exert modulatory control over a larger network underlying C. elegans behavior.4. Conclusions: The C. elegans model system offers unique opportunities to elucidate ill-defined pathways that support DA release, inactivation, and signaling in addition to clarifying mechanisms of DA-mediated behavioral plasticity. Further use of the model offers prospects for the identification of novel genes and proteins whose study may yield benefits for DA-supported neural disorders in man.
-
[
Annu Rev Pharmacol Toxicol,
2003]
The neurotransmitter dopamine (DA) plays a central role in the coordination of movement, attention, and the recognition of reward. Loss of DA from the basal ganglia, as a consequence of degeneration of neurons in the substantia nigra, triggers postural instability and Parkinson's disease (PD). DA transporters (DATs) regulate synaptic DA availability and provide a conduit for the uptake of DA mimetic neurotoxins, which can be used to evoke neuronal death and Parkinson-like syndrome. Recently, we have explored the sensitivity of DA neurons in the nematode Caenorhabditis elegans to the Parkinsonian-inducing neurotoxin 6-hydroxydopamine (6-OHDA) and found striking similarities, including DAT dependence, to neurodegeneration observed in mammalian models. In this review, we present our findings in the context of molecular and behavioral dimensions of DA signaling in C. elegans with an eye toward opportunities for uncovering DAT mutants, DAT regulators, and components of toxin-mediated
-
[
Front Toxicol,
2022]
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
-
[
Prog Neurobiol,
2010]
Parkinson's disease (PD) was one of the first neurological disorders to have aspects of the disease modeled faithfully in non-human animal species. A key feature of the disease is a diminished control over voluntary movement and progressive depletion of brain dopamine (DA) levels that stems from the large-scale loss of DA-producing neurons. Despite their inherent limitations, rodent and non-human primate models of PD have helped unravel several aspects of PD pathogenesis. Thus, we now have neurotransmitter replacement therapy for PD, and a number of neuroprotective compounds that can be assessed in clinical trials. However, no treatment is currently available that can halt or retard the progressive loss of DA neurons, which underlies PD pathology. Moreover, no therapies can permanently alleviate the clinical features of the disease. The lack of a cure or long-term effective treatment is paralled by our incomplete understanding of the underlying pathomechanisms of the disease. A range of robust, flexible, and complementary animal models will be an invaluable tool with which to unravel the pathogenesis of PD. Here we review the most important contributions made by non-mammalian model organisms. These include zebrafish (Danio rerio), flies (Drosophila melanogaster), anurans (frogs and toads) and nematodes (Caenorhabditis elegans). While it is not anticipated that they will replace rodent and primate-based ones, they offer convenient systems with which to explore the relative contribution made by genetic and environmental factors to PD pathology. In addition, they offer an economic and rapid alternative for testing compounds that target PD. Most importantly, the combined use of these models allow for ongoing research to uncover the basic mechanisms underlying PD pathogenesis.
-
[
Bioessays,
2008]
Predicting the phenotype of an organism from its genotype is a central question in genetics. Most importantly, we would like to find out if the perturbation of a single gene may be the cause of a disease. However, our current ability to predict the phenotypic effects of perturbations of individual genes is limited. Network models of genes are one tool for tackling this problem. In a recent study, (Lee et al.) it has been shown that network models covering the majority of genes of an organism can be used for accurately predicting phenotypic effects of gene perturbations in multicellular organisms. BioEssays 30:707-710, 2008. (c) 2008 Wiley Periodicals, Inc.
-
[
Front Physiol,
2023]
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
-
[
Environ Health Perspect,
2011]
BACKGROUND: A common link has been exposed, namely, that metal exposure plays a role in obesity and in Parkinson's disease (PD). This link may help to elucidate mechanisms of neurotoxicity. OBJECTIVE: We reviewed the utility of the nematode, Caenorhabditis elegans, as a model organism to study neurodegeneration in obesity and Parkinson's disease (PD), with an emphasis on the neurotransmitter, dopamine (DA). DATA SOURCES: A PubMed literature search was performed using the terms "obesity" and any of the following: "C. elegans," "central nervous system," "neurodegeneration," "heavy metals," "dopamine" or "Parkinson's disease." We reviewed the identified studies, including others cited therein, to summarize the current evidence of neurodegeneration in obesity and PD, with an emphasis on studies carried out in C. elegans and environmental toxins in the etiology of both diseases. DATA EXTRACTION AND DATA SYNTHESIS: Heavy metals and DA have both been linked to diet-induced obesity, which has led to the notion that the mechanism of environmentally induced neurodegeneration in PD may also apply to obesity. C. elegans has been instrumental in expanding our mechanism-based knowledge of PD, and this species is emerging as a good model of obesity. With well-established toxicity and neurogenetic assays, it is now feasible to explore the putative link between metal- and chemical-induced neurodegeneration. CONCLUSIONS: One side effect of an aging population is an increase in the prevalence of obesity, metabolic disorders, and neurodegenerative orders, diseases that are likely to co-occur. Environmental toxins, especially heavy metals, may prove to be a previously neglected part of the puzzle.
-
[
1980]
A number of review articles on the nematode cuticle have been published in the last decade. The most recent of these are those of Bird and Lee and Atkinson. These authors, while emphasizing the complexity and variability of nematode cuticles, support the use of a simplified nomenclature of cuticle structure which divides the cuticle into three regions or zones-namely, cortical, median, and basal. It is obvious that many exceptions to this fundamental pattern occur, and I shall mention some of these below. However, I think that they are adaptations to survival in changing environments, particularly where parasitism is involved. In particular, I propose to consider the structure and functions of the surface or epicuticle of the cortical zone, for it is here that reactions similar to those occurring at cell surfaces and in cell membranes are thought to occur in a wide range of "helminth" organisms. At the moment, particularly for the Nematoda, these ideas require more experimental evidence to establish them as facts. However, the use of sensitive techniques currently employed by membrane physicists and chemists to isolate, label, analyze, measure, and observe interactions taking place in cell membranes have in many instances yet to be used on the nematode cuticle. There is no doubt that the free-living bacterial-feeding nematodes such as those belonging to the genus Caenorhabditis, and in particular C. elegans, are the experimental models of choice for this purpose.
-
[
Transcription,
2023]
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.