Chaudhary D [class:all]
[species:All Species]
[species:All Species]
- Download all ()
- Classes
- Classes
- Anatomy term:
- Antibody:
- CDS:
- Clone:
- Construct:
- Expression pattern:
- Expression profile:
- Expression cluster:
- Sequence feature:
- Gene:
- Gene cluster:
- Genotype:
- GO term:
- Homology group:
- Interaction:
- Life stage:
- Microarray results:
- Operon:
- PCR Product/Oligo:
- Phenotype:
- Position matrix:
- Protein:
- Pseudogene:
- Rearrangement:
- RNAi:
- Sequence:
- Strain:
- Structure Data:
- Transcript:
- Transgene:
- Transposon:
- Variation:
- Analysis:
- Disease Ontology:
- Gene class:
- Laboratory:
- Molecule:
- Motif:
- Paper:
- Person:
- Picture:
- Reagent:
- Transposon Family:
- Process&Pathway:
- Paper types
- Paper types
- Journal article:
- Review:
- Lectures:
- Interactive tutorial:
- Retracted publication:
- Technical report:
- Directory:
- Monograph:
- Published erratum:
- Meeting abstract:
- Gazette article:
- Book chapter:
- Comment:
- Book:
- Email:
- WormBook:
- Other:
- News:
- Letter:
- Editorial:
- Congresses:
- Historical article:
- Biography:
- Interview:
- Species
10K results (0.017 seconds)
- paper:
- person: Divya Chaudhary
- go term: aldose beta-D-fructosyltransferase activity
- go term: lacto-N-biosidase activity
- go term: mannotetraose 2-alpha-N-acetylglucosaminyltransferase activity
- go term: globoside alpha-N-acetylgalactosaminyltransferase activity
- go term: dol-P-Man:Man(5)GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase activity
- go term: glucosaminylgalactosylglucosylceramide beta-galactosyltransferase activity
- go term: glucose-fructose oxidoreductase activity
- go term: dol-P-Man:Man(6)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase activity
[
J Biol Chem,
1998] The apoptotic machinery of Caenorhabditis elegans includes three core interacting components: CED-3, CED-4, and CED-9. CED-3 is a death protease composed of a prodomain and a protease domain. CED-4 is a P-loop-containing, nucleotide-binding molecule that complexes with the single polypeptide zymogen form of CED-3, promoting its activation by autoprocessing. CED-9 blocks death by complexing with CED-4 and suppressing its ability to promote CED-3 activation. A naturally occurring alternatively spliced form of CED-4 that contains an insertion within the nucleotide-binding region (CED-4L) functions as a dominant negative inhibitor of CED-3 processing and attenuates cell death. Domain mapping studies revealed that distinct regions within CED-4 bind to the CED-3 prodomain and protease domain. Importantly, the CED-4 P-loop was involved in prodomain binding. Disruption of P-loop geometry because of mutation of a critical lysine (K165R) or insertional inactivation (CED-4L) abolished prodomain binding. Regardless, K165R and CED-4L still retained CED-3 binding through the protease domain but were unable to initiate CED-3 processing. Therefore, the P-loop-prodomain interaction is critical for triggering CED-4-mediated CED-3 processing. Underscoring the importance of this interaction was the finding that CED-9 contacted the P-loop and selectively inhibited its interaction with the CED-3 prodomain. These results provide a simple mechanism for how CED-9 functions to block CED-4-mediated CED-3 processing and cell death.
Catalysis of the reaction: alpha-D-aldosyl1 beta-D-fructoside + D-aldose2 = D-aldose1 + alpha-D-aldosyl2 beta-D-fructoside.
Catalysis of the reaction: H2O + beta-D-Gal-(1,3)-beta-D-GlcNAc-(1,3)-beta-D-Gal-(1,4)-D-Glc = beta-D-Gal-(1,4)-D-Glc + beta-D-Gal-(1,3)-D-GlcNAc.
Catalysis of the reaction: 1,3-alpha-D-mannosyl-1,2-alpha-D-mannosyl-1,2-alpha-D-mannosyl-D-mannose + UDP-N-acetyl-D-glucosamine = 1,3-alpha-D-mannosyl-1,2-(N-acetyl-alpha-D-glucosaminyl-alpha-D-mannosyl)-1,2-alpha-D-mannosyl-D-mannose + UDP.
Catalysis of the reaction: N-acetyl-D-galactosaminyl-(1,3)-D-galactosyl-(1,4)-D-galactosyl-(1,4)-D-glucosylceramide + UDP-N-acetylgalactosamine = N-acetyl-D-galactosaminyl-N-acetyl-D-galactosaminyl-(1,3)-D-galactosyl-(1,4)-D-galactosyl-(1,4)-D-glucosylceramide + UDP.
Catalysis of the reaction: an alpha-D-man-(1->2)-alpha-D-Man-(1->2)-alpha-D-Man-(1->3)-(alpha-D-Man-(1->6))-beta-D-Man-(1->4)-beta-D-GlcNAc-(1->4)-D-GlcNAc-diphosphodolichol + dolichyl D-mannosyl phosphate = H+ + alpha-D-Man-(1->2)-alpha-D-Man-(1->2)-alpha-D-Man-(1->3)-(alpha-D-Man-(1->3)-alpha-D-Man-(1->6))-beta-D-Man-(1->4)-beta-D-GlcNAc-(1->4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate.
Catalysis of the reaction: N-acetyl-D-glucosaminyl-(1,3)-D-galactosyl-(1,4)-D-glucosylceramide + UDP-galactose = D-galactosyl-N-acetyl-D-glucosaminyl-(1,3)-D-galactosyl-(1,4)-D-glucosylceramide + UDP.
Catalysis of the reaction: D-fructose + D-glucose = D-glucitol + D-glucono-1,5-lactone.
Catalysis of the reaction: alpha-D-man-(1->2)-alpha-D-Man-(1->2)-alpha-D-Man-(1->3)-(alpha-D-Man-(1->3)-alpha-D-Man-(1->6))-beta-D-Man-(1->4)-beta-D-GlcNAc-(1->4)-D-GlcNAc-diphosphodolichol + dolichyl D-mannosyl phosphate = H+ + alpha-D-Man-(1->2)-alpha-D-Man-(1->2)-alpha-D-Man-(1->3)-(alpha-D-Man-(1->2)-alpha-D-Man-(1->3)-alpha-D-Man-(1->6))-beta-D-Man-(1->4)-beta-D-GlcNAc-(1->4)-D-GlcNAc-diphosphodolichol + dolichyl phosphate.
load 10 more results