- page settings
- showhide sidebar
- showhide empty fields
- layout
- (too narrow)
- open all
- close all
- Page Content
- Overview
- External Links
- History
- Referenced
- Tools
- Tree Display
- My WormBase
- My Favorites
- My Library
- Recent Activity
- Comments (0)
history logging is off
Tree Display
My Favorites
My Library
Comments on Long L et al. (2023) Elife "A toxin-antidote selfish element increases fitness of its host." (0)
Overview
Long L, Xu W, Valencia F, Paaby AB, & McGrath PT (2023). A toxin-antidote selfish element increases fitness of its host. Elife, 12. doi:10.7554/eLife.81640
Selfish genetic elements can promote their transmission at the expense of individual survival, creating conflict between the element and the rest of the genome. Recently, a large number of toxin-antidote (TA) post-segregation distorters have been identified in non-obligate outcrossing nematodes. Their origin and the evolutionary forces that keep them at intermediate population frequencies are poorly understood. Here, we study a TA element in C. elegans called zeel-1;peel-1. Two major haplotypes of this locus, with and without the selfish element, segregate in C. elegans. We evaluate the fitness consequences of the zeel-1;peel-1 element outside of its role in gene drive in non-outcrossing animals, and demonstrate that loss of the toxin peel-1 decreased fitness of hermaphrodites and resulted in reductions in fecundity and body size. These findings suggest a biological role for peel-1 beyond toxin lethality. This work demonstrates that a TA element can provide a fitness benefit to its hosts, either during their initial evolution or by being co-opted by the animals following their selfish spread. These findings guide our understanding on how TA elements can remain in a population where gene drive is minimized, helping resolve the mystery of prevalent TA elements in selfing animals.