- page settings
- showhide sidebar
- showhide empty fields
- layout
- (too narrow)
- open all
- close all
- Page Content
- Overview
- External Links
- History
- Referenced
- Tools
- Tree Display
- My WormBase
- My Favorites
- My Library
- Recent Activity
- Comments (0)
history logging is off
Tree Display
My Favorites
My Library
Comments on Nejatbakhsh A et al. (2023) Inf Process Med Imaging "Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks." (0)
Overview
Nejatbakhsh A, Dey N, Venkatachalam V, Yemini E, Paninski L, & Varol E (2023). Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks. Inf Process Med Imaging, 13939, 332-343. doi:10.1007/978-3-031-34048-2_26
Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of <i>C. elegans</i> worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in <i>C. elegans</i> hermaphrodites, fluorescence microscopy of male <i>C. elegans</i>, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.