Questions, Feedback & Help
Send us an email and we'll get back to you ASAP. Or you can read our Frequently Asked Questions.
  • page settings
  • hide sidebar
  • show empty fields
  • layout
  • (too narrow)
  • open all
  • close all
Resources » Paper

Wang S et al. (2020) Nat Struct Mol Biol "H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage."

  • History

  • Referenced

  • Tree Display

  • My Favorites

  • My Library

  • Comments on Wang S et al. (2020) Nat Struct Mol Biol "H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage." (0)

  • Overview

    PMID:
    Status:
    Publication type:
    Journal_article
    WormBase ID:
    WBPaper00060474

    Wang S, Meyer DH, & Schumacher B (2020). H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol. doi:10.1038/s41594-020-00513-1

    DNA damage causes cancer, impairs development and accelerates aging. Transcription-blocking lesions and transcription-coupled repair defects lead to developmental failure and premature aging in humans. Following DNA repair, homeostatic processes need to be reestablished to ensure development and maintain tissue functionality. Here, we report that, in Caenorhabditis elegans, removal of the WRAD complex of the MLL/COMPASS H3K4 methyltransferase exacerbates developmental growth retardation and accelerates aging, while depletion of the H3K4 demethylases SPR-5 and AMX-1 promotes developmental growth and extends lifespan amid ultraviolet-induced damage. We demonstrate that DNA-damage-induced H3K4me2 is associated with the activation of genes regulating RNA transport, splicing, ribosome biogenesis and protein homeostasis and regulates the recovery of protein biosynthesis that ensures survival following genotoxic stress. Our study uncovers a role for H3K4me2 in coordinating the recovery of protein biosynthesis and homeostasis required for developmental growth and longevity after DNA damage.

    We thank Bjoern Schumacher for curating this paper through ACKnowledge (Author Curation to Knowledgebase) 👍

    Tip: Seeing your name marked red? Please help us identify you.