- page settings
- showhide sidebar
- showhide empty fields
- layout
- (too narrow)
- open all
- close all
- Page Content
- Overview
- External Links
- History
- Referenced
- Tools
- Tree Display
- My WormBase
- My Favorites
- My Library
- Recent Activity
- Comments (0)
history logging is off
Tree Display
My Favorites
My Library
Comments on Taylor CA et al. (2020) J Nutr "Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity." (0)
Overview
Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varao AM, Aschner M, Smith DR, & Mukhopadhyay S (2020). Maintaining Translational Relevance in Animal Models of Manganese Neurotoxicity. J Nutr. doi:10.1093/jn/nxaa066
Manganese is an essential metal, but elevated brain Mn concentrations produce a parkinsonian-like movement disorder in adults and fine motor, attentional, cognitive, and intellectual deficits in children. Human Mn neurotoxicity occurs owing to elevated exposure from occupational or environmental sources, defective excretion (e.g., due to cirrhosis), or loss-of-function mutations in the Mn transporters solute carrier family 30 member 10 or solute carrier family 39 member 14. Animal models are essential to study Mn neurotoxicity, but in order to be translationally relevant, such models should utilize environmentally relevant Mn exposure regimens that reproduce changes in brain Mn concentrations and neurological function evident in human patients. Here, we provide guidelines for Mn exposure in mice, rats, nematodes, and zebrafish so that brain Mn concentrations and neurobehavioral sequelae remain directly relatable to the human phenotype.
Authors: Taylor CA, Tuschl K, Nicolai MM, Bornhorst J, Gubert P, Varao AM, Aschner M, Smith DR, Mukhopadhyay S