- page settings
- showhide sidebar
- showhide empty fields
- layout
- (too narrow)
- open all
- close all
- Page Content
- Overview
- External Links
- History
- Referenced
- Tools
- Tree Display
- My WormBase
- My Favorites
- My Library
- Recent Activity
- Comments (0)
history logging is off
Tree Display
My Favorites
My Library
Comments on Johnson, Christina K. et al. (2019) International Worm Meeting "Requirement of glial Na+/K+-ATPase in touch sensation highlights ionic and metabolic link between glia and touch neurons in C. elegans." (0)
Overview
Johnson, Christina K., Fernandez Abascal, Jesus, Wang, Ying, & Bianchi, Laura (2019). Requirement of glial Na+/K+-ATPase in touch sensation highlights ionic and metabolic link between glia and touch neurons in C. elegans presented in International Worm Meeting. Unpublished information; cite only with author permission.
Isolated microenvironments, such as the tripartite synapse, where the concentration of ions is regulated independently from the surrounding tissues, exist throughout the nervous system, including in mechanoreceptors. Modulation of the ionic composition of these microenvironments has been suggested to be achieved by glia and other accessory cells. However, the molecular mechanisms of ionic regulation and effects on neuronal output and animal behavior are poorly understood. Using the model organism C. elegans, our lab published that Na+ channels of the DEG/ENaC family expressed in glia control neuronal Ca2+ transients and animal behavior in response to sensory stimuli. DEG/ENaC Na+ channels are known to establish a favorable driving force for K+ excretion, which occurs via inward rectifier K+ channels, in epithelial tissues across species. We hypothesized that a similar mechanism exists in the nervous system. Using molecular, genetic, in vivo imaging, and behavioral approaches, we showed that expression in glia of inward rectifier K+ channels and cationic channels rescues the sensory deficits caused by knock-out of glial DEG/ENaCs without disrupting neuronal morphology, supporting our hypothesis. Based on this model, Na+/K+-ATPases are also needed to maintain ionic concentrations following influx of Na+ and excretion of K+. We show here that, in addition to glial Na+ and K+ channels, two specific glial Na+/K+-ATPases, EAT-6 and CATP-1, are needed for touch sensation and that their requirement can be bypassed by a high glucose diet. The effect of glucose is dependent on ATP binding capability of the pump, translation, transcription, and the activity of CATP-2, a third Na+/K+-ATPase ?-subunit. Taken together, our results support metabolic and ionic cooperation between glia and neurons in C. elegans mechanosensors, a mechanism that is essential to regulating neuronal output and may be conserved across species.
Affiliation:
- University of Miami Miller School of Medicine