Questions, Feedback & Help
Send us an email and we'll get back to you ASAP. Or you can read our Frequently Asked Questions.
  • page settings
  • hide sidebar
  • show empty fields
  • layout
  • (too narrow)
  • open all
  • close all
Resources » Paper

Horikawa M et al. (2010) Mol Cell Endocrinol "Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans."

  • History

  • Referenced

  • Tree Display

  • My Favorites

  • My Library

  • Comments on Horikawa M et al. (2010) Mol Cell Endocrinol "Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans." (0)

  • Overview

    PMID:
    Status:
    Publication type:
    Journal_article
    WormBase ID:
    WBPaper00036042

    Horikawa M, & Sakamoto K (2010). Polyunsaturated fatty acids are involved in regulatory mechanism of fatty acid homeostasis via daf-2/insulin signaling in Caenorhabditis elegans. Mol Cell Endocrinol, 323, 183-92. doi:10.1016/j.mce.2010.03.004

    The development of the dauer form of Caenorhabditis elegans daf-2(e1370) enhances the expression of genes such as fatty acid desaturase fat-6 and fat-7 and fatty acid elongase elo-2, and increases the level of triglyceride (TAG). RNA interference (RNAi) of the fat-6, fat-7, and elo-2 genes lowers fat accumulation in the nematode. We recently clarified the fact that RNAi of fat-related genes, especially fat-2, reduced fat accumulation and activated DAF-16. FAT-2 regulates the first step of polyunsaturated fatty acid (PUFA) synthesis. RNAi of fat-2 induced nuclear translocation of DAF-16 and increased the level of TAG that could be detected by Oil Red-O, but suppressed the accumulation of lipid dyed by Nile red. TAG levels are also increased in the adult daf-2(e1370), whereas Nile red staining showed fat reduction. Introduction of RNAi of fat-2, fat-6, fat-7, and elo-2 genes into the daf-16 deficient worm recovered Nile red-stained lipid storage. These results suggest that Nile red stained the lipids except TAG, and that the levels of these lipids are regulated by daf-16. In fat-2, fat-6, fat-7, and elo-2-RNAi worms, the Nile red-stained fat level was restored through addition of fatty acids, especially PUFA. This suggests that reduction of Nile red-dyed lipid reflects the disorder of fatty acid metabolism. Furthermore, treatment of the fat-2-RNAi worm with PUFA--using the fatty acids from linoleic acid through eicosapentaenoic acid--suppressed nuclear localization of DAF-16. These results suggest that PUFA acts as a mediator of daf-2/insulin signaling and that daf-16 might be involved in fatty acid homeostasis under the control of PUFA.


    Tip: Seeing your name marked red? Please help us identify you.