Programmed cell death (or apoptosis) is an important feature of C. elegans development. Previous studies have identified pro-apoptotic genes
egl-1,
ced-3 and
ced-4 and anti-apoptotic genes
ced-9 and
icd-1 that control programmed cell death.. We have identified and characterized a novel pro-apoptotic gene
eif-3.K. Loss-of-function by mutation or RNAi inactivation in
eif-3.K resulted in a decrease of cell corpses, whereas heatshock-induced over-expression of
eif-3.K weakly but significantly increased cell corpses. Interestingly, the
eif-3.K mutation partially suppressed ectopic cell deaths caused by over-expression of
egl-1 or
ced-4. This result suggests that
eif-3.K may act downstream of or in parallel to
egl-1 and
ced-4 in the programmed cell death pathway. Using a cell-specific promoter to express
eif-3.k in touch neurons, we showed that
eif-3.K likely promoted cell death in a cell-autonomous manner. To further explore EIF-3.K function, we generated antibodies against bacterially expressed EIF-3.K protein. We found that EIF-3.K was ubiquitously expressed during embryogenesis and localized to the cytoplasm. As human
eif-3.K can functionally substitute C. elegans
eif-3.K in an
eif-3.K mutant, the function of
eif-3.K in apoptosis is likely conserved in evolution.