-
[
Worm Breeder's Gazette,
1993]
Cloning of the
lin-32 gene Connie Zhao and Scott W. Emmons, Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461
-
[
Worm Breeder's Gazette,
1994]
C. elegans Molecular Genetics and Long PCR Scott R. Townsend, Cathy Savage, Alyce L. Finelli, Ting Xie, and Richard W. Padgett, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855
-
[
Worm Breeder's Gazette,
1994]
Strain names for non-C. elegans species Scott W. Emmonst, Armand Leroit, and David Fitch, Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, Department of Biology, New York University, RmlOO9 Main Bldg., Washington Square, New York, NY 10003
-
[
Genes Dev,
2002]
The CM domain is a cysteine-rich DNA-binding motif first recognized in proteins encoded by the Drosophila set determination gene doublesex (Erdman and Burtis 1993; Zhu et al. 2000). As the name doublesex (dsx) suggests, this gene has functions in both sexes: Its transcripts undergo sex-specific alternative splicing, so that it can encode either a male-specific isoform, DSX(M), or a female-specific isoform, DSX(F) (Baker and Wolfner 1988; Burtis and Baker 1989). These proteins have the same N-terminal DNA-binding domain, but different C termini that confer different regulatory properties on the two forms. The expression of DSX(M) directs male development, and the expression of DSX(F) directs female development, throughout most of the somatic tissues of the fruit fly.
-
[
Cell Host Microbe,
2017]
Microbes affect drug responses, but mechanisms remain elusive. Two papers in Cell exploit C.elegans to infer anticancer drug mechanisms. Through high-throughput screens of drug-microbe-host interactions, Garcia-Gonzalez etal. (2017) and Scott etal. (2017) determine that bacterial metabolism underpins fluoropyrimidine cytotoxicity, providing a paradigm for unraveling bacterial mechanisms in drug metabolism.
-
[
J Neurosci,
2003]
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T-amb) and its memory of the temperature of its cultivation (T-cult). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic release of AFD in worms cultivated at temperatures between 15 and 25degreesC, and subjected to fixed, ambient temperatures in the same range. We found that the rate of AFD synaptic release is high if either T-amb > T-cult or T-amb > T-cult, but AFD synaptic release is low if T-amb congruent to T-cult. This suggests that AFD encodes a direct comparison between T-amb and T-cult.
-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Genomics,
1995]
Recently, a novel family of genes with a region of homology to the mouse T locus, which is known to play a crucial, and conserved, role in vertebrate development, has been discovered. The region of homology has been named the T-box. The T-box domain of the prototypical T locus product is associated with sequence-specific DNA binding activity. In this report, we have characterized four members of the T-box gene family from the nematode Caenorhabditis elegans. All lie in close proximity to each other in the middle of chromosome III. Homology analysis among all completely sequenced T-box products indicates a larger size for the conserved T-box domain (166 to 203 residues) than previously reported. Phylogenetic analysis suggests that one C. elegans T-box gene may be a direct ortholog of the mouse Tbx2 and Drosophila omb genes. The accumulated data demonstrate the ancient nature of the T-box gene family and suggest the existence of at least three separate T-box-containing genes in a common early metazoan ancestor to nematodes and vertebrates.
-
[
Worm Breeder's Gazette,
1983]
As starting points for the molecular cloning of
lin-12 III and
tra-1 III, we have identified several Tc1 polymorphisms linked to these genes. Genomic DNA was prepared from appropriate Bristol/Bergerac hybrid strains, cut with EcoRI, and probed with Tc1 (kindly provided by Scott Emmons). Our data are summarized in the maps below, which give the approximate map locations and EcoRI fragment sizes of the Bergerac-specific Tc1's. [See Figure 1]
-
[
Glycobiology,
2006]
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-Gal:GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122)(2). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by PCR using a C. elegans cDNA library as the template, contains 1,170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type-II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has 7 Cys residues in the lumenal domain including 6 conserved Cys residues in all of the orthologs. The Ce-T-synthase has 4 potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search and it contains 8 exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein constructs show that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc, and might require invertebrate-specific factors for formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and opens new avenues to explore O-glycan function in this model organism.