-
[
J Biol Chem,
1999]
Mammalian Ca2+/CaM-dependent protein kinase kinase (CaM-KK) has been identified and cloned as an activator for two kinases, CaM kinase I (CaM-KI) and CaM kinase IV (CaM-KIV), and a recent report (Yano, S., Tokumitsu, H., and Soderling, T. R. (1998) Nature 396, 584-587) demonstrates that CaM-KK can also activate and phosphorylate protein kinase B (PKB). In this study, we identify a CaM-KK from Caenorhabditis elegans, and comparison of its sequence with the mammalian CaM-KK alpha and beta shows a unique Arg-Pro (RP)-rich insert in their catalytic domains relative to other protein kinases. Deletion of the RP-domain resulted in complete loss of CaM-KIV activation activity and physical interaction of CaM-KK with glutathione S-transferase-CaM-KIV (T196A). However, CaM-KK autophosphorylation and phosphorylation of a synthetic peptide substrate were normal in the RP-domain mutant. Site-directed mutagenesis of three conserved Arg in the RP- domain of CaM-KK confirmed that these positive charges are important for CaM-KIV activation. The RP- domain deletion mutant also failed to fully activate and phosphorylate CaM-KI, but this mutant was indistinguishable from wild-type CaM-KK for the phosphorylation and activation of PKB. These results indicate that the RP-domain in CaM-KK is critical for recognition of downstream CaM-kinases but not for its catalytic activity (i.e. autophosphorylation) and PKB activation.
-
[
J Biol Chem,
1999]
We have recently demonstrated that Caenorhabditis elegans Ca(2+)/calmodulin-dependent protein kinase kinase (CeCaM-KK) can activate mammalian CaM-kinase IV in vitro (Tokumitsu, H., Takahashi, N., Eto, K., Yano, S., Soderling, T.R., and Muramatsu, M. (1999) J. Biol. Chem. 274, 15803-15810). In the present study, we have identified and cloned a target CaM-kinase for CaM-KK in C. elegans, CeCaM-kinase I (CeCaM-KI), which has approximately 60% identity to mammalian CaM-KI. CeCaM-KI has 348 amino acid residues with an apparent molecular mass of 40 kDa, which is activated by CeCaM-KK through phosphorylation of Thr(179) in a Ca(2+)/CaM-dependent manner, resulting in a 30-fold decrease in the K(m) of CeCaM-KI for its peptide substrate. Unlike mammalian CaM-KI, CeCaM-KI is mainly localized in the nucleus of transfected cells because the NH(2)-terminal six residues ((2)PLFKRR(7)) contain a functional nuclear localization signal. We have also demonstrated that CeCaM-KK and CeCaM-KI reconstituted a signaling pathway that mediates Ca(2+)-dependent phosphorylation of cAMP response element-binding protein (CREB) and CRE-dependent transcriptional activation in transfected cells, consistent with nuclear localization of CeCaM-KI. These results suggest that the CaM-KK/CaM-KI cascade is conserved in C. elegans and is functionally operated both in vitro and in intact cells, and it may be involved in Ca(2+)-dependent nuclear events such as transcriptional activation through phosphorylation of CREB.
-
[
Parasitol Res,
2009]
DEAD box proteins are putative RNA unwinding proteins found in organisms ranging from mammals to bacteria. We have identified a novel immunodominant cDNA clone, BmL3-helicase, encoding DEAD box RNA helicase by immunoscreening of a larval stage cDNA library of Brugia malayi. The cDNA sequence exhibited strong sequence homology to Caenorhabditis elegans and C. briggsae RNA helicase, a prototypic member of the DEAD (Asp-Glu-Ala-Asp) box protein family. The clone also showed similarity with RNA helicase of Wolbachia, an endosymbiotic bacterium of filarial parasite. It was overexpressed as approximately 50 kDa His-tag fusion protein, and ATP hydrolysis assay of recombinant enzyme showed that either ATP or dATP was required for the unwinding activity, indicating BmL3-helicase as an ATP/dATP-dependent RNA helicase. The recombinant protein also demonstrated cross-seroreactivity with human bancroftian sera. The presence of BmL3-helicase in various life stages of B. malayi was confirmed by immunoblotting of parasite-life-cycle extracts with polyclonal sera against the BmL3-helicase, which showed high levels of expression in microfilaria, L(3,) and adult (both male and female) stages. In the absence of an effective macrofilaricidal agent and validated anti-filarial drug targets, RNA helicases could be utilized as a rational drug target for developing agents against the human filarial parasite.
-
[
Parasitol Int,
2008]
5'' EST from filarial gene database has been subjected to 3'' rapid amplification of cDNA ends (RACE), semi-nested PCR and PCR to obtain full-length cDNA of Brugia malayi. Full-length hexokinase gene was obtained from cDNA using gene specific primers. The elicited PCR product was cloned, sequenced and expressed as an active enzyme in Escherichia coli. Sequence analysis of B. malayi hexokinase (BmHk) revealed 59% identity with nematode Caenorhabditis elegans but low similarity with all other available hexokinases including human. BmHk, an apparent tetramer with subunit molecular mass of 72 kDa, was able to phosphorylate glucose, fructose, mannose, maltose and galactose. The K(m) values for glucose, fructose and ATP were found to be 0.035+/-0.005, 75+/-0.3 and 1.09+/-0.5 mM respectively. BmHk was strongly inhibited by ADP, glucosamine, N-acetyl glucosamine and mannoheptulose. The recombinant enzyme was found to be activated by glucose-6-phosphate. ADP exhibited noncompetitive inhibition with the substrate glucose (K(i)=0.55 mM) while, mixed type of inhibition was observed with inorganic pyrophosphate (PPi) when ATP was used as substrate (K(i)=9.92 microM). The enzyme activity is highly dependent on maintenance of free sulfhydryl groups. CD analysis indicated that BmHk is composed of 37% alpha-helices and 26% beta-sheets. The observed differences in kinetic properties of BmHk as compared to host enzyme may facilitate designing of specific inhibitors against BmHk.
-
[
Exp Gerontol,
2009]
Earlier we have reported that reserpine, an antihypertensive drug, known to downregulate biogenic amines through inhibition of the vesicular monoamine transporter (VMAT), increases longevity of Caenorhabditis elegans with a high quality of life, namely, enhanced and prolonged mobility (Srivastava et al., 2008). As neurodegenerative diseases are of adult onset, we addressed the protective ability of reserpine against neurodegenerative diseases, especially Alzheimer's disease (AD). In the well established AD model in C. elegans, Amyloid beta (Abeta) is expressed in the muscles and Abeta toxicity is manifested as paralysis (Link, 1995). In this model, reserpine significantly delayed paralysis and increased the longevity. In addition, reserpine provided thermotolerance, but interestingly the Abeta transcript and expression levels remains grossly unchanged.
-
[
Vaccine,
2006]
A zinc containing metalloprotease, 175 kDa collagenase, purified from adult female Setaria cervi showed strong cross-reactivity with sera from putatively immune (PI) individuals (unpublished observation) and induced cytotoxicity to B. malayi L3 larvae and microfilariae by ADCC mechanism [Srivastava Y, Bhandari YP, Reddy MVR, Harinath BC, Rathaur S. An adult 175 kDa collagenase antigen of Setaria cervi in immunoprophylaxis against Brugia malayi. J Helminth 2004;78:347-52]. These preliminary observations suggested the immunoprotective nature of collagenase. To confirm the vaccine potential of this protease, a vaccine trial was conducted in jirds (Meriones unguiculatus) against human filarial parasite B. malayi. The vaccination resulted into a mean protection level of 75.86% and produced high level of protease neutralizing antibodies. Cytokine analysis in immune jirds sera suggested a mixed Th1/Th2 type cellular immune response whereas ELISA, immunoblotting and enzyme antibody inhibition assay revealed the presence of specific anti-collagenase antibodies. Taken together, all these results suggest that S. cervi 175 kDa collagenase could form the basis of an effective molecular vaccine against human lymphatic filariasis.