-
[
Dev Cell,
2015]
Adherens junctions (AJs) play a crucial role in epithelial tissue development and tumorigenesis, and the mechanisms controlling their assembly and disassembly have therefore attracted considerable attention. A paper from Tsur et al. (2015) in this issue of Developmental Cell now shows how sumoylation and desumoylation of E-cadherin promotes its recruitment to AJs.
-
[
Cell Metab,
2013]
The mechanisms underlying the biological activity of metformin, a widely prescribed drug to treat type 2 diabetes, remain elusive. In a recent issue of Cell, Cabreiro et al. report that in C. elegans, metformin indirectly impacts lifespan by altering the methionine metabolism of its microbial partner E. coli (Cabreiro et al., 2013).
-
[
Nat Cell Biol,
2014]
Autophagy is an intracellular degradation system that is mediated by orchestrated functions of membranes and proteins. A genetic screen in Caenorhabditis elegans revealed that O-linked N-acetylglucosamine modification of the SNARE protein SNAP-29 negatively regulates SNARE-dependent fusion between autophagosomes and lysosomes. This regulatory mechanism is conserved in mammals.
-
[
Cell,
2014]
The hexosamine biosynthetic pathway (HBP) generates metabolites for protein N- and O-glycosylation. Wang et al. and Denzel et al. report a hitherto unknown link between the HBP and stress in the endoplasmic reticulum. These studies establish the HBP as a critical component of the cellular machinery of protein homeostasis.
-
[
BMC Biol,
2012]
In a paper in BMC Biology Virk et al. show that Caenorhabditis elegans lifespan is extended in response to a diet of folate-deficient Escherichia coli. The deficiencies in folate biosynthesis were due to an aroD mutation, or treatment of E. coli with sulfa drugs, which are mimics of the folate precursor para-aminobenzoic acid. This study suggests that pharmacological manipulation of the gut microbiome folate status may be a viable approach to slow animal aging, and raises questions about folate supplementation.
-
[
Nat Cell Biol,
2004]
Why are proteins glycosylated? On the basis of new studies, I propose two models to clarify the specific functions of glycosylation in worms. The first explains how intra- and inter-cellular trafficking of an N-glycosylated disintegrin-metalloprotease guides somatic gonadal cells through their migratory route, determining the shape of an organ. The second explains how rigid coats of secreted chondroitin proteoglycans bend membranes to drive cytokinesis and epithelial invagination.
-
[
Gut Microbes,
2013]
The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one.
-
[
Genes Dev,
2002]
The CM domain is a cysteine-rich DNA-binding motif first recognized in proteins encoded by the Drosophila set determination gene doublesex (Erdman and Burtis 1993; Zhu et al. 2000). As the name doublesex (dsx) suggests, this gene has functions in both sexes: Its transcripts undergo sex-specific alternative splicing, so that it can encode either a male-specific isoform, DSX(M), or a female-specific isoform, DSX(F) (Baker and Wolfner 1988; Burtis and Baker 1989). These proteins have the same N-terminal DNA-binding domain, but different C termini that confer different regulatory properties on the two forms. The expression of DSX(M) directs male development, and the expression of DSX(F) directs female development, throughout most of the somatic tissues of the fruit fly.
-
[
Microb Cell,
2018]
Iron plays many critical roles in human biology, such as aiding the transport of oxygen and mediating redox reactions. Iron is essential for life, yet little is known about how iron is taken up into mitochondria to impact the labile iron pool. Iron deficiency is one of the most prevalent human nutrient-deficiency diseases in the world and is a major cause of anemia that affects >25% of the world's population, but unfortunately the current treatment (oral iron supplementation) is inefficient and has many side effects. A greater understanding of iron uptake, and discovery of molecules that aid in this process, may lead to more effective treatments for iron deficiency. In this study, we uncovered a unique and surprising role for an <i>Escherichia coli</i>-produced siderophore enterobactin (Ent) that facilitates iron uptake by the host, observed in both <i>C. elegans</i> and mammalian cells. Although siderophores are well-known Fe<sup>+3</sup> scavengers, this activity has previously been described to only benefit iron acquisition by bacteria, not the host. This unexpected function is dependent on the binding of Ent to the host's ATP synthase -subunit but is independent of other subunits of the ATP synthase. This finding marks a major shift regarding the role of this siderophore in the "iron tug-of-war" paradigm, which is often used to describe the fight between the bacteria and the host for this essential micronutrient. Instead, this study presents <i>E. coli</i> as a commensal "friend" that provides a molecule that supports the host's iron homeostasis. This work reveals a novel, beneficial role of a bacteria-generated molecule in aiding the host's iron homeostasis, and points to surprising new benefits from commensal bacteria.