-
[
Cell Mol Life Sci,
2010]
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly.
-
[
J Microsc,
2008]
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser-induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time-resolved fixation to arrest development at specific stages. The second method uses high-pressure freezing of whole worms followed by freeze-substitution (HPF-FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high-resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF-FS and electron tomography. This procedure combines the advantages of time-resolved fixation and superior ultrastructural preservation by high-pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.
-
[
J Microsc,
2003]
Caenorhabditis elegans is one of the most important genetic systems used in current biological research. Increasingly, these genetics-based research projects are including ultrastructural analyses in their attempts to understand the molecular basis for cell function. Here, we present and review state-of-the-art methods for both ultrastructural analysis and immunogold localization in C. elegans. For the initial cryofixation, high-pressure freezing is the method of choice, and in this article we describe two different strategies to prepare these nematode worms for rapid freezing. The first method takes advantage of transparent, porous cellulose capillary tubes to contain the worms, and the second packs the worms in E. coli and/or yeast paste prior to freezing. The latter method facilitates embedding of C. elegans in a thin layer of resin so individual worms can be staged, selected and precisely orientated for serial sectioning followed by immunolabelling or electron tomography.
-
[
J Cell Sci,
2018]
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
-
[
Methods Cell Biol,
2010]
The roundworm Caenorhabditis elegans is one of the major model organisms in modern cell and developmental biology. Here, we present methods for the three-dimensional (3D) reconstruction of the worm ultrastructure. We describe the use of (1) serial-section analysis, (2) electron tomography, and (3) serial block face imaging by scanning electron microscopy (SEM). Sample preparation for high-pressure freezing/freeze substitution (HPF/FS) has been extensively covered in a previous volume of this "Methods in Cell Biology" series and will only be described briefly. We will discuss these 3D methods in light of recent research activities related to worm and early embryo biology.
-
[
Methods Cell Biol,
2007]
-
[
Methods Cell Biol,
2019]
We describe a routine method to locate cells of appropriate meiotic stages in the gonad of Caenorhabditis elegans males prior to 3D reconstruction of meiotic spindles by electron tomography. For this, serial semi-thick (300nm) sections of whole worms are pre-screened and recorded at low magnification by transmission electron microscopy. Cells of interest are identified in aligned image stacks showing the entire proximal region of male gonads at low magnification. Tilt series of selected cells are then recorded at higher magnification to reconstruct meiotic spindles of selected cells in 3D. Our approach allows a routine staging of spermatocytes without the use of anesthetics or the application of physical immobilization of worms. We also describe a modification of a previously published protocol (Muller-Reichert, Srayko, Hyman, O'Toole, & McDonald, 2007) by using polyvinylpyrrolidone (PVP) instead of bovine serum albumin (BSA) as a "filler" for specimen loading in high-pressure freezing.
-
[
Methods Cell Biol,
2012]
This chapter is an update of the previously published book chapter "Correlative Light and Electron Microscopy of Early C. elegans Embryos in Mitosis" (Muller-Reichert, Srayko, Hyman, O'Toole, & McDonald, 2007). Here, we have adapted and improved the protocol for the isolated meiotic embryos, which was necessary to meet the specific challenges a researcher faces while investigating the development of very early Caenorhabditis elegans embryos ex-utero. Due to the incompleteness of the eggshell assembly, the meiotic embryo is very fragile and much more susceptible to changes in the environmental conditions than the mitotic ones. To avoid phototoxicity associated with wide-field UV illumination, we stage the meiotic embryos primarily using transmitted visible light. Throughout the staging and high-pressure freezing, we incubate samples in an isotonic embryo buffer. The ex-utero approach allows precise tracking of the developmental events in isolated meiotic embryos, thus facilitating the comparison of structural features between wild-type and mutant or RNAi-treated samples.
-
[
J Microsc,
2013]
Correlative light and electron microscopy (CLEM) has recently gained increasing attention, because it enables the acquisition of dynamic as well as ultrastructural information about subcellular processes. It is the power of combining the two imaging modalities that gives additional information as compared to using the imaging techniques separately. Here, we briefly summarize two CLEM approaches for the analysis of cells in mitosis and cytokinesis.
-
[
Methods Mol Biol,
2009]
In this chapter we describe the preparation of early mitotic C. elegans embryos for the tomographic reconstruction of end-morphologies of spindle microtubules. Early embryos are prepared by high-pressure freezing and freeze-substitution for thin-layer embedding in Epon/Araldite. We further describe data acquisition, tomographic reconstruction, and 3-D modeling of microtubules in serially sectioned mitotic spindles. The presented techniques are applicable to other model systems.