-
[
Chromosome Res,
2004]
Kinetochores are proteinaceous organelles that assemble on centromeric DNA to direct chromosome segregation in all eukaryotes. While many aspects of kinetochore function are conserved, the nature of the chromosomal domain upon which kinetochores assemble varies dramatically between different species. In monocentric eukaryotes, kinetochores assemble on a localized region of each chromosome. In contrast, holocentric species such as the nematode Caenorhabditis elegans have diffuse kinetochores that form along the entire length of their chromosomes. Here, we discuss the nature of chromosome segregation in C. elegans. In addition to reviewing what is known about kinetochore function, chromosome structure, and chromosome movement, we consider the consequences of the specialized holocentric architecture on chromosome segregation.
-
[
Semin Cell Dev Biol,
2010]
Anillin is a highly conserved multidomain protein that interacts with cytoskeletal components as well as their regulators. Throughout phylogeny, Anillins contribute to cytokinesis, the cell shape change that occurs at the end of meiosis and mitosis to separate a cell into daughter cells. Failed cytokinesis results in binucleation, which can lead to genomic instability. Study of Anillin in several model organisms has provided us with insight into how the cytoskeleton is coordinated to ensure that cytokinesis occurs with high fidelity. Here we review Anillin's interacting partners and the relevance of these interactions in vivo. We also discuss questions of how these interactions are coordinated, and finally provide some perspective regarding Anillin's role in cancer.
-
[
FEBS Lett,
2009]
The nematode worm Caenorhabditis elegans (C. elegans) is increasingly popular as a model organism for aging studies as well as for testing antioxidants and other compounds for effects on longevity. However, results in the literature are sometimes confusing and contradictory. This review introduces C. elegans as a model organism, discusses aspects that make it attractive for aging and antioxidant research, and addresses some problems and potential artifacts.
-
[
Curr Biol,
2005]
Despite low global diversity among natural populations of Caenorhabditis elegans, neighboring populations can be as genetically distinct as strains from different continents, probably owing to transient bottlenecks and ongoing dispersal as a dauer larva. Selfing predominates in the wild, but rare outcrossing may also play an important role.
-
[
Curr Biol,
2004]
The recently published genome of the nematdoe Caenorhabditis briggsae provides a drastic improvement in structural annotation of the C. elegans genome, as well as a promising source of evolutionary comparisons.
-
[
Glycobiology,
2001]
Classes of intracellular lectins that recognize core-type structures and mediate intracellular glycoprotein trafficking are present in vertebrates, model invertebrates such as Caenorhabditis elegans and Drosophila melanogaster, plants, and yeasts. Lectins that recognize more complex structures at the cell surface, such as C-type lectins and galectins, are also found in invertebrate organisms as well as vertebrates, but the functions of these proteins have evolved differently in different animal lineages.
-
[
Cytokine Growth Factor Rev,
1999]
In this review, we provide a summary of the genetic analysis of TGFBeta signal transduction, as well as its role in various human diseases and mouse models. We also use discoveries in the TGFBeta pathway as an example to highlight some of the techniques used in the invertebrate world of C. elegans and Drosophila to further our understanding of this, and other, signaling systems. The roles of such techniques in elucidating diverse pathways, as well as pathways of human disease genes, will become more important as the information from the genome projects increases and as the development of genetics tools to analyze them becomes more powerful. Given the conservation of signaling mechanisms, there will be increasing synergy between studies in invertebrates and vertebrates in future years for solving different cellular pathways.
-
[
Ann Appl Biol,
2005]
Genomic tools are expanding the utility of organisms originally developed as models for biomedical research as a means to address complex agricultural problems. Conversely, agricultural pests are serving as models to help unravel questions of basic biology. Examples from C. elegans and root-knot nematode of this two-way exchange are discussed.
-
[
Methods,
2016]
The localization of a protein is intrinsically linked to its role in the structural and functional organization of the cell. Advances in transgenic technology have streamlined the use of protein localization as a function discovery tool. Here we review the use of large genomic DNA constructs such as bacterial artificial chromosomes as a transgenic platform for systematic tag-based protein function exploration.
-
[
Curr Opin Cell Biol,
1999]
Signaling via the epidermal growth factor (EGF)-receptor family is subject to regulation and modulation by multiple ligands, effectors and negative regulators, as well as regulation by heterodimerization between family members and crosstalk between heterologous signaling pathways. Besides serving as a paradigm for receptor tyrosine kinases in general, this family is crucial for development and is often mutated or amplified in human tumors.