-
[
FEBS Lett,
2002]
6-Photocholesterol, a new photoactivatable analog of cholesterol in which a diazirine functionality replaces the 5,6-double bond in the steroid nucleus, was used recently to identify cholesterol-binding proteins in neuroendocrine cells [Thiele, C., Hannah, M.J., Farenholz, F. and Huttner, W.B. (2000) Nat. Cell Biol. 2, 42-49], to track the distribution and transport of cholesterol in Caenorhabditis elegans [Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F.R. and Kurzchalia, T.V. (2001) Mol. Biol. Cell 12, 1725-1736], and to probe lipid-protein interactions in oligodendrocytes [Simons, M., Kramer, E.M., Thiele, C., Stoffel, W. and Trotter, J. (2000) J. Cell Biol. 151, 143-154]. To determine whether 6-photocholesterol is a faithful mimetic of cholesterol we analyzed the ability of this probe, under conditions in which it is not photoactivated to a carbene, to substitute for cholesterol in two unrelated assays: (1) to condense 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine monomolecular films and (2) to mediate the fusion of two alphaviruses (Semliki Forest and Sindbis) with liposomes. The results suggest that this analog is a suitable photoprobe of cholesterol.
-
[
Curr Biol,
1997]
The establishment of polarity in the embryo is fundamental for the correct development of an organism [1]. The first cleavage of the Caenorhabditis elegans embryo is asymmetric with certain cytoplasmic components being distributed unequally between the daughter cells [2-4]. Using a genetic screen, Kemphues and co-workers have identified six par genes (partition-defective) [5,6], which are involved in the process of asymmetric division. One of these genes encodes a highly conserved protein, PAR-1, which is a serine/threonine kinase that localizes asymmetrically to the posterior part of the zygote and to those blastocysts that give rise to the germ line [7-9]. We reasoned that the mammalian homologue of PAR-1 (mPAR-1) might be involved in the process of polarization of epithelial cells, which consist of apical and basolateral membrane domains. We found that mPAR-1 was expressed in a wide variety of epithelial tissues and cell lines and was associated with the cellular cortex. In polarized epithelial cells, mPAR-1 was asymmetrically localized to the lateral domain. A fusion protein lacking the kinase domain had the same localization as the full-length protein but its prolonged expression acted in a dominant-negative fashion: lateral adhesion of the transfected cells to neighbouring cells was diminished, resulting in the former cells being 'squeezed out' from the monolayer. Moreover, the polarity of these cells was disturbed resulting in mislocalization of E-cadherin. Thus, in the C. elegans embryo and in epithelial cells, polarity appears to be governed by similar mechanisms.
-
[
Nat Cell Biol,
1999]
Small invaginations called caveolae are present on the surface of many cells and are a form of glycosphingolipid- and cholesterol-enriched microdomains or rafts in the plasma membrane. The main component of the caveolar coat is caveolin-1 (refs 3,4), a membrane protein of relative molecular mass (Mr) 21,000 (21K), which binds cholesterol and can form high-molecular-mass homo-oligomers resistant to sodium dodecyl sulphate (SDS). Caveolin-1 has been implicated in signal transduction, but its function remains unclear; whereas overactivation of the
p42/44 MAP-kinase cascade was observed after downregulation of caveolin-1 (ref. 8), integrin-mediated activation of the Ras/extracellular-signal regulated kinase (ERK) pathway or conversion of prostate cancer cells to an androgen-insensitive phenotype required expression of caveolin-1. To resolve the function of caveolin-1 in intact animals, we analysed caveolin-1 and glycosphingolipid/cholesterol-enriched rafts during the development of the nematode Caenorhabditis elegans. We show that C. elegans caveolin-1 (CAV-1) is expressed in the adult germ line and during embryonic development, and that CAV-1 is essential for Ras/MAP-kinase-dependent progression through the meiotic cell cycle. The function of CAV-1 is dependent on its association with cholesterol-rich membrane microdomains, providing a link between the membrane composition of germ cells and meiotic progression. Our results demonstrate that caveolin-1 and cholesterol-rich microdomains have an essential role in signal transduction in vivo and suggest a model for meiotic progression in the C. elegans germ line.
-
[
Mol Biol Cell,
2001]
Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1-L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins.
rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.
-
[
J Lab Autom,
2016]
Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.
-
[
Curr Biol,
2017]
The
pha-1 gene of Caenorhabditis elegans was originally heralded as a master regulator of organ differentiation. A new study suggests instead that
pha-1 actually serves no role in development and instead is a component of a selfish genetic element.