-
[
Cancer Research,
1999]
It is an honor and a great pleasure to introduce Dr. Robert Horvitz to you as the 1998 recipient of the Alfred Sloan Prize of the General Motors Cancer Research Foundation. Let me begin by telling you a little bit about Bob's
-
[
Chembiochem,
2003]
I never expected to spend most of my life studying worms. However, when the time came for me to choose an area for my postdoctoral research, I was intrigued both with the problems of neurobiology and with the approaches of genetics. Having heard that a new "genetic organism" with a remarkably simple nervous system was being explored by Sydney Brenner - the microscopic soil nematode Caenorhabditis elegans - I decided to join Sydney in his efforts.
-
[
Biochem Biophys Res Commun,
2017]
Programmed cell clearance is a highly regulated physiological process of elimination of dying cells that occurs rapidly and efficiently in healthy organisms. It thus ensures proper development as well as homeostasis. Recent studies have disclosed a considerable degree of conservation of cell clearance pathways between nematodes and higher organisms. The externalization of the anionic phospholipid phosphatidylserine (PS) has emerged as an important "eat-me" signal for phagocytes and its exposition on apoptotic cells is controlled by phospholipid translocases and scramblases. However, there is mounting evidence that PS exposure occurs not only in apoptosis, but may also be actively expressed on the surface of cells undergoing other forms of cell death including necrosis; PS is also expressed on the surface of engulfing cells. Additionally, PS may act as a "save-me" signal during axonal regeneration. Here we discuss mechanisms of PS exposure and its recognition by phagocytes as well as the consequences of PS signaling in nematodes and in mammals.
-
[
Front Cell Dev Biol,
2023]
Phosphatidylserine (PS) is a lipid component of the plasma membrane. It is asymmetrically distributed to the inner leaflet in live cells. In cells undergoing apoptosis, phosphatidylserine is exposed to the outer surfaces. The exposed phosphatidylserine acts as an evolutionarily conserved "eat-me" signal that attracts neighboring engulfing cells in metazoan organisms, including the nematode <i>Caenorhabditis elegans</i>, the fruit fly <i>Drosophila melanogaster</i>, and mammals. During apoptosis, the exposure of phosphatidylserine to the outer surface of a cell is driven by the membrane scramblases and flippases, the activities of which are regulated by caspases. Cells undergoing necrosis, a kind of cell death frequently associated with cellular injuries and morphologically distinct from apoptosis, were initially believed to allow passive exposure of phosphatidylserine through membrane rupture. Later studies revealed that necrotic cells actively expose phosphatidylserine before any rupture occurs. A recent study in <i>C. elegans</i> further reported that the calcium ion (Ca<sup>2+</sup>) plays an essential role in promoting the exposure of phosphatidylserine on the surfaces of necrotic cells. These findings indicate that necrotic and apoptotic cells, which die through different molecular mechanisms, use common and unique mechanisms for promoting the exposure of the same "eat me" signal. This article will review the mechanisms regulating the exposure of phosphatidylserine on the surfaces of necrotic and apoptotic cells and highlight their similarities and differences.
-
[
Cell Mol Life Sci,
2016]
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
-
De Benedictis G, Slagboom E, Yashin AI, Feder ME, Kivisild T, Gartner A, Sikora E, Zwaan B, Lee S, Vijg J, Schumacher M, Bartke A, Kartal-Ozer N, Tatar M, Franceschi C, Gonos E, Leroi AM
[
Mechanisms of Ageing & Development,
2005]
Classical evolutionary theory predicts the existence of genes with antagonistic effects on longevity and various components of early-life fitness. Quantitative genetic studies have provided convincing evidence that such genes exist. However, antagonistic pleiotropic effects have rarely been attributed to individual loci. We examine several classes of longevity-assurance genes: those involved in regulation of the gonad; the insulin-like growth factor pathway; free-radical scavenging; heat shock proteins and apoptosis. We find initial evidence that antagonistic pleiotropic effects are pervasive in each of these classes of genes and in various model systems-although most studies lack explicit studies of fitness components. This is particularly true of human studies. Very little is known about the early-life fitness effects of longevity loci. Given the possible medical importance of such effects we urge their future study.
-
[
Mech Ageing Dev,
2002]
It strikes me that among our relatively small community of gerontologists concerned with genetic approaches to our science, there is somewhat of a dichotomization. On the one hand, there are those of us, like myself, who tend to be dour ''complificationists''. Journalists talk to us, but are usually disappointed by the encounter. We are perhaps too impressed with the enormous diversity of genetic modulations of human senescence and with our interpretations of the implications of the evolutionary biological theory of senescence, namely that senescent phenotypes per se are non-adaptive, non-determinative, subject to stochastic events as well as highly polygenic modulations, with resulting wide variability in mechanisms of senescence among and within species. Quite happily, however, there are wonderful optimists among us. They seem to be convinced that there are likely to be a rather small number of major gene effects for a few major mechanisms. They include most Saccharomyces cerevisiae and Caenorhabditis elegans geneticists, some Drosophila melanogaster geneticists, and some mouse geneticists. They also include caloric restriction enthusiasts. Let''s call these colleagues ''simplificationists''. Journalists and friends generally find them to be delightful companions. Where does the truth lie? Perhaps the truth lies somewhere between these two extremes and is largely dependent upon the organisms and the range of environments being investigated.
-
[
Environ Int,
2019]
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.