-
[
J Bioenerg Biomembr,
2005]
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V(1) domain responsible for ATP hydrolysis and an integral V(0) domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V(0) domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.
-
[
Mol Reprod Dev,
1990]
Caenorhabditis elegans develops from the embryo, through four larval stages that are punctuated by molts, then to adulthood. There are two sexes: hermaphrodites and males. Hermaphrodites may reproduce by self-fertilization or they may mate with males to produce cross-progeny...
-
[
Exp Gerontol,
2006]
Caenorhabditis elegans has been used to model aspects of a number of age-associated neurodegenerative diseases, including Alzheimer''s, Parkinson''s and Huntington''s diseases. These models have typically involved the transgenic expression of disease-associated human proteins. Here I describe my laboratory''s specific experience engineering C. elegans models of Alzheimer''s disease, and give a general consideration of the advantages and disadvantages of these C. elegans models. The type of insights that might be gained from using these (relatively) simple models are highlighted. In particular, I consider the potential these models have for uncovering common and unique fundamental toxic mechanisms underlying human neurodegenerative diseases.
-
[
Acta Biochimica Polonica,
2005]
Carbohydrates are known as sources of immunological cross-reactivity of allergenic significance. In celery and in cypress pollen, the major allergens Api g 5 and Cup a 1 are recognised by antisera raised against anti-horseradish peroxidase and by patients'''' IgE which apparently bind carbohydrate epitopes; mass spectrometric analysis of the tryptic peptides and of their N-glycans showed the presence of oligosaccharides carrying both xylose and core alpha 1,3-fucose residues. Core alpha 1,3-fucose residues are also a feature of invertebrates: genetic and biochemical studies on the fruitfly Drosophila melanogaster, the parasitic trematode Schistosoma mansoni and the nematode worm Caenorhabditis elegans indicate that these organisms possess core alpha 1,3-fucosyltransferases. Various experiments have shown that fucosyltransferases from both fly and worm are responsible in vivo and in vitro for the synthesis of N-glycans which cross-react with anti-horseradish peroxidase; thus, we can consider these enzymes as useful tools in generating standard compounds for testing cross-reactive carbohydrate epitopes of
-
[
Curr Biol,
2001]
When meiotic cells complete S phase, homologous chromosomes pair, synapse and undergo recombination. A checkpoint protein is somehow required for meiotic chromosome pairing in C. elegans, thus providing a direct link between S phase and the rest of the meiotic program.
-
[
Eur J Cell Biol,
2010]
The basement membrane (BM) is a dense, tightly cross-linked matrix that acts as physiological barrier to maintain tissue homeostasis. Studies on Caenorhabditis elegans, leucocytes diapedesis and cancer cell invasion have shown that BM transmigration is a conserved three-stage process. Firstly, invadopodia-like protrusions form at the ventral surface of invasive cells; later, one protrusion elongates that lastly drives the infiltration of cells into the underlying compartment. This review illustrates the mechanism used by invasive cancer cells to cross the BM barrier by focusing on the role of key cytoskeleton components. We also describe currently available in vitro assays to study each step of the BM transmigration program.
-
[
Toxins (Basel),
2016]
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria's ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria's acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
-
[
Cell Microbiol,
2015]
Cross-kingdom interactions between bacteria and fungi are a common occurrence in the environment. Recent studies have identified various types of interactions that either can take the form of a synergistic relationship or can result in an antagonistic interplay with the subsequent destruction or inhibition of growth of bacteria, fungi or both. This cross-kingdom communication is of particular significance in human health and disease, as bacteria and fungi commonly colonize various human surfaces and their interactions can at times alter the outcome of invasive infections. Moreover, mixed infections from both bacteria and fungi are relatively common among critically ill patients and individuals with weak immune responses. The purpose of this review is to summarize our knowledge on the type of interactions between bacteria and fungi and their relevance in human infections.
-
[
WormBook,
2007]
Because of their free-living life cycle alternatives, Strongyloides and related nematode parasites may represent the best models for translating C. elegans science to the study of nematode parasitism. S. stercoralis, a significant pathogen of humans, can be maintained in laboratory dogs and gerbils. Biosafety precautions necessary for work with S. stercoralis, though unfamiliar to many C. elegans researchers, are straightforward and easily accomplished. Although specialized methods are necessary for large-scale culture of the free-living stages of S. stercoralis, small-scale cultures for experimental purposes may be undertaken using minor modifications of standard C. elegans methods. Similarly, the morphological similarities between C. elegans and the free-living stages of S. stercoralis allow investigational methods such as laser cell ablation and DNA transformation by gonadal microinjection to be easily adapted from C. elegans to S. stercoralis. Comparative studies employing these methods have yielded new insights into the neuronal control of the infective process in parasites and its similarity to regulation of dauer development in C. elegans. Furthermore, we have developed a practical method for transient transformation of S. stercoralis with vector constructs having various tissue- and cell-specific expression patterns and have assembled these into a modular vector kit for distribution to the community.
-
[
Ann Pharm Fr,
2006]
The Nematode Caenorhabditis elegans (C. elegans) is an established model increasingly used for studying human disease pathogenesis. C. elegans models are based on the mutagenesis of human disease genes conserved in this Nematode or on the transgenesis with disease genes not conserved in C. elegans. Genetic examinations will give new insights on the cellular and molecular mechanisms that are altered in some neurodegenerative diseases like Duchenne''s muscular dystrophy, Huntington''s disease and Alzheimer''s disease. C. elegans may be used for primary screening of new compounds that may be used as drugs in these diseases.