-
[
J Parasitol,
1994]
Membranes from both ivermectin-sensitive and -resistant Haemonchus contortus L3 larvae were examined for the presence of high affinity [3H]ivermectin binding sites. Both tissue preparations displayed high affinity drug binding sites (Kd = 0.13 nM). Receptor density (Bmax = 0.4 pmol/mg) was the same in both the sensitive and resistant nematodes suggesting that target site modification was not involved in the development of drug resistance in this particular strain of H. contortus. The H. contortus ivermectin binding site appeared to be similar to the well characterized Caenorhabditis elegans ivermectin binding site with respect to affinity for ivermectin and receptor density.
-
[
Biochem J,
1994]
Avermectin-binding proteins from the free-living nematode worm Caenorhabditis elegans and from the fruitfly Drosophila melanogaster were purified to homogeneity via a three-step procedure. The binding proteins were covalently labelled using- a radioactive photoaffinity probe and then partially purified on a Sephacryl S-300 gel-filtration column. The radiolabelled binding proteins were then purified by immunoaffinity chromatography using a monoclonal antibody to avermectin covalently attached to Protein A-Sepharose beads. Three affinity-labelled Drosophila proteins with molecular masses between 45 and 50 kDa were isolated in this way and then separated from each other by electroelution. This three-step protocol provides a rapid technique for receptor purification which may be of use in the purification of other binding proteins.
-
Tkacz JS, Rohrer SP, Schaeffer JM, Frazier EG, Tsipouras A, Rosegay A, Birzin ET, Singh SB, Goetz MA, Adefarati AA, Zink DL
[
Bioorg Med Chem,
1996]
A series of ophiobolins were isolated from a fungal extract based on their nematocidal activity. These compounds are non-competitive inhibitors of ivermectin binding to membranes prepared from the free-living nematode, Caenorhabditis elegans, with an inhibition constant of 15 microM. The ophiobolins which were most potent in the biological assays, ophiobolin C and ophiobolin M, were also the most potent compounds when evaluated in a C. elegans motility assay. These data suggest that the nematocidal activity of the ophiobolins is mediated via an interaction with the ivermectin binding site. The isolation, structure and biological activity of ophiobolins have been described.
-
de Bono, Mario, Amin-Wetzel, Niko, Sengupta, Piali, Philbrook, Alison, Kazatskaya, Anna, Yuan, Lisa
[
MicroPubl Biol,
2020]
A subset of sensory neurons in C. elegans contains compartmentalized sensory structures termed cilia at their distal dendritic ends (Ward et al. 1975; Perkins et al. 1986; Doroquez et al. 2014). Cilia present on different sensory neuron types are specialized both in morphology and function, and are generated and maintained via shared and cell-specific molecules and mechanisms (Perkins et al. 1986; Evans et al. 2006; Mukhopadhyay et al. 2007; Mukhopadhyay et al. 2008; Morsci and Barr 2011; Doroquez et al. 2014; Silva et al. 2017). The bilaterally symmetric pair of URX oxygen-sensing neurons in the C. elegans head (Figure 1A) is thought to be non-ciliated (Ward et al. 1975; Doroquez et al. 2014) but nevertheless exhibits intriguing morphological similarities with ciliated sensory neurons. URX dendrites extend to the nose where they terminate in large bulb-like complex structures (Ward et al. 1975; Doroquez et al. 2014; Cebul et al. 2020) (Figure 1A). These structures concentrate oxygen-sensing signaling molecules (Gross et al. 2014; Mclachlan et al. 2018) suggesting that similar to cilia, these structures are specialized for sensory functions. Microtubule growth events similar to those observed in ciliated sensory neurons were also reported at the distal dendritic regions of URX, implying the presence of a microtubule organizer such as a remodeled basal body (Harterink et al. 2018). Moreover, a subset of ciliary genes is expressed in URX (Kunitomo et al. 2005; Harterink et al. 2018; Mclachlan et al. 2018). We tested the hypothesis that URX dendrites contain cilia at their distal ends.
-
[
Mol Cell,
2009]
Three recent papers (Gu et al., 2009; Claycomb et al., 2009; van Wolfswinkel et al., 2009) provide evidence that links a new class of small RNAs and Argonaute-associated complexes to centromere function and genome surveillance.
-
[
MicroPubl Biol,
2021]
Like other animals, the nematode C. elegans exhibits reduced movement and sleep in response to sickness, which can be induced by exposure to high temperatures (Hill et al. 2014; Nelson et al. 2014) ultraviolet light (DeBardeleben et al. 2017), and other stressful exposures (Hill et al. 2014; Goetting et al. 2020). This response has been termed Stress/Sickness-Induced Sleep (SIS) (Hill et al. 2014; Trojanowski and Raizen 2016). Exposure to the stressor leads to quiescence in part via release of the cytokine Epidermal Growth Factor (EGF) (Hill et al. 2014; Konietzka et al. 2020), which is encoded by the gene
lin-3 (Hill and Sternberg 1992). EGF activates the ALA and RIS neurons, which then release their respective neuropeptides to effect reduced movement and behavioral quiescence (Konietzka et al. 2020).
-
[
MicroPubl Biol,
2021]
Neuronal networks can achieve similar outputs via distinct underlying circuit mechanisms (Beverly et al., 2011; Marder et al., 2015; Saideman et al., 2007; Trojanowski et al., 2014; Wang et al., 2019). This degeneracy allows networks to maintain robustness without compromising functional flexibility (Cropper et al., 2016; Edelman and Gally, 2001). Since the contribution of degenerate neuronal pathways is likely to be revealed under defined genetic or environmental conditions, it is challenging to identify and describe the contributions of such pathways to neuronal circuit function.
-
[
MicroPubl Biol,
2021]
MEC-4 and UNC-8 are subunits of the DEG/ENaC family of voltage-independent Na+ channels in C. elegans (Driscoll and Chalfie 1991, Canessa, Horisberger et al. 1993, Waldmann, Champigny et al. 1996, Waldmann, Champigny et al. 1997, de Weille, Bassilana et al. 1998, Waldmann and Lazdunski 1998). While MEC-4 is expressed in body touch neurons where it mediates the transduction of gentle touch sensation (Driscoll and Chalfie 1991, O'Hagan, Chalfie et al. 2005), UNC-8 is primarily expressed in motoneurons where it is involved in synaptic remodeling during development (Tavernarakis, Shreffler et al. 1997, Miller-Fleming, Petersen et al. 2016). Both MEC-4 and UNC-8 can be hyperactivated by genetic mutations that hinder channel closing, called (d) mutations (Driscoll and Chalfie 1991, Shreffler, Magardino et al. 1995, Goodman, Ernstrom et al. 2002, Wang, Matthewman et al. 2013). C. elegans neurons and Xenopus oocytes expressing these hyperactive variants of MEC-4 and UNC-8 undergo cell death due to uncontrolled flux of ions into the cell. Cell death in Xenopus oocytes and in cultured C. elegans neurons can be prevented by incubation with the DEG/ENaC channel blocker amiloride (Goodman, Ernstrom et al. 2002, Suzuki, Kerr et al. 2003, Wang, Matthewman et al. 2013).
-
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
-
[
MicroPubl Biol,
2022]
The Q system is a genetic tool developed to deliver spatiotemporal control over gene expression (Giles et al. 1991; Potter et al. 2010; Wei et al. 2012). Although it has already been adapted for use in C. elegans by Wei et al. in 2012, to date, the Q system has not been applied extensively in this nematode. In the relatively few available reports, it is mainly used to constitutively restrict gene expression in a spatial manner (e.g. Schild et al. 2014; Schild and Glauser 2015; Jee et al. 2016; Tolstenkov et al. 2018; Chiyoda et al. 2021), while but a handful of studies also explore the temporal aspect of the system (Matus et al. 2015; Yuan et al. 2016; Cottee et al. 2017; Hoang and Miller 2017). We aimed to apply this tool in the C. elegans nervous system to gain both spatial and temporal control over expression of a gene encoding a reporter protein that is targeted to the secretory pathway. Despite our efforts, we here report that in our hands, the Q system is not suitable for application in the neurons due to a lack of dynamic range.