-
[
WormBook,
2015]
Nuclear receptors are transcription factors that often respond to small molecule metabolites and fat-soluble compounds to regulate gene expression. They broadly govern development, reproduction, metabolism, and homeostasis in diverse metazoan species and their dysregulation is associated with numerous diseases. Work in C. elegans has shed light on the seminal role of nuclear receptors in life history regulation, stem cell progression, developmental timing, cell fate specification, nutrient sensing, metabolism, and longevity. Here we highlight recent advances on the best-studied nuclear receptors in the worm, and how they illuminate metazoan biology.
-
[
PLoS Genet,
2007]
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
-
[
Exp Gerontol,
2013]
Pioneering work in model organisms reveals that the reproductive system is involved not only in propagation of the species but also regulates organismal metabolism and longevity. In C. elegans, prevention of germline stem cell proliferation results in a 60% extension of lifespan, termed gonadal longevity. Gonadal longevity relies on the transcriptional activities of steroid nuclear receptor DAF-12, the FOXO transcription factor homolog DAF-16, the FOXA transcription factor homolog PHA-4, and the HNF-4-like nuclear receptor NHR-80. These transcription factors work in an integrated transcriptional network to regulate fatty acid lipolysis, autophagy, stress resistance and other processes, which altogether enhance homeostasis and extend life. Because the reproductive system also regulates longevity in other species, studies in C. elegans may shed light on ancient mechanisms governing reproduction and survival.
-
[
Cell Metab,
2005]
In C. elegans, dauer pheromone is an indicator of population density and influences pathways that regulate metabolism, development, and aging. In a recent publication in Nature, Paik and coworkers (Jeong et al., 2005) show the purified substance to be a pyran ring conjugated to heptanoic acid, setting the stage for dissecting downstream signaling pathways.
-
[
WormBook,
2006]
Nuclear receptors (NRs) are transcription factors typically regulated by lipophilic hormones, which coordinate metazoan metabolism, development and homeostasis. C. elegans has undergone a remarkable expansion of the family, harboring 284 of these receptors in its genome. Approximately 20 of them have been analyzed genetically, most of which correspond to conserved homologs in other metazoans. These NRs variously affect broad life history traits such as sex determination, molting, developmental timing, diapause, and life span. They also impact neural development, axon outgrowth and neuronal identity. Finally, they influence lipid and xenobiotic metabolism. The study of C. elegans NRs holds great promise for dissecting nuclear receptor signaling pathways in vivo in the context of complex endocrine networks.
-
[
Curr Top Dev Biol,
2013]
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
-
[
Curr Opin Cell Biol,
2015]
Aminosugars produced in the hexosamine pathway (HP) are utilized in protein glycosylation reactions involved in protein maturation and cellular signaling. Recent evidence revealed a role of the HP in protein quality control and ageing. Elevation of the HP product UDP-N-acetylglucosamine in the nematode Caenorhabditis elegans results in resistance towards toxic aggregation-prone proteins, and extended lifespan. Glutamine-fructose 6 phosphate aminotransferase (GFAT-1), the HP's key enzyme, is a target of the unfolded protein response (UPR). Thus, cardiac stress in mice results in GFAT-1 activation that triggers a cytoprotective response. Feeding of glucosamine to aged mice increases their life expectancy. Here we discuss HP activation and cellular protein quality control mechanisms that result in stress resistance and suppression of age-related proteotoxicity.
-
[
Genes Dev,
2008]
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
-
[
Trends Endocrinol Metab,
2008]
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
-
[
Exp Gerontol,
2006]
Caenorhabditis elegans diapause, reproductive development, and life span are influenced by the DAF-12 nuclear hormone receptor signaling pathway. Here, we describe how this nuclear receptor integrates environmental and physiologic cues and regulates developmental age, reproduction and aging.