Meiotic maturation
During female gamete production oocytes arrest during the diplotene stage of meiosis I before completing diakinesis and moving into meiosis II. In response to hormones, oocytes resume and complete meiosis to produce the final mature gametes. In C. elegans, meiotic maturation is triggered by major sperm protein through G-alpha-S-adenylate cyclase - protein kinase A (PKA) signaling and soma-to-germline communication.
Anaphase
In C. elegans, anaphase is comprised of two separable components, anaphase A, where the chromosomes separate from each other before any chromosome to pole movement, and anaphase B, where the spindle poles move away from each other, with the concomitant movement of the chromosomes to the poles. During anaphase B, the movement of the spindles, which carry the chromosomes, occurs through a combination of pulling and pushing forces. Cortical forces attached at the centrosomes pull the microtubule asters away from one another, while central spindle forces from overlapping microtubule arrays that had formed between separating chromosomes, push the chromosomes away from one another. The holocentric nature of C. elegans chromosomes entails special consideration to ensure the forces at all of the microtubule attachment sites of the chromosome are coordinated so that shearing of the chromosome during segregation does not occur.
Ray development
C. elegans male tail contains four types of male-specific sensilla, the most prominent of which are the rays. These 18 sensory rays convey mechano- and chemosensory information critical to male mating. Each ray is composed of three cells: RnA: A-type sensory neuron; RnB: B-type sensory neuron; and Rnst: ray structural cell, which are derived from one neuroblast, the ray precursor cell called Rn. Each ray is morphologically and molecularly distinct from each other. Most all ray identity follows a determinate cell lineage model where cell identity is established based on the pattern of cell division; ray 5 does require external cues from a TGF-beta signalling pathway to adopt its final fate.
Mitosis
Mitosis is part of the eukaryotic cell cycle and results in the production of two daughter cells each with a copy of the genome. The cell cycle itself is comprised of an interphase (made up of three stages G1, S, and G2) and the M (mitotic) phase. Cell growth, active transcription and translation, and DNA replication occur during interphase. During M phase duplicated DNA (chromatin) condense into sister chromatids (prophase); the nuclear envelop breaks down, kinetochore microtubles attach to the chromosomes and centrosomes are pushed to the poles of the growing spindle (prometaphase); the chromosomes are lined up on the metaphase plate (metaphase); sister chromatids are pulled to spindle poles at opposite ends of the cell (anaphase); the nuclear envelop is reformed and the chromatids decondense to chromatin (telophase); and the cell is cleaved into two by a contractile ring and the resolution of a cleavage furrow (cytokinesis). In some variant cell cycles nuclear division may not be followed by cell division, or G1 and G2 phases may be absent.