[
Curr Med Chem,
2007]
The envelope that encapsulates the cell nucleus has recently gained considerable interest, as several clinical syndromes are linked to mutations in its molecular components. Most disorders recognized so far are caused by defects in the nuclear lamins, building blocks of a filamentous network lining the nucleoplasmic side of the inner nuclear membrane. Nuclear lamins are the evolutionary precursors of cytoskeletal intermediate filaments and associate in a head-to-tail manner into a stable lamina at the nuclear periphery and into a more dispersed structure in the nucleoplasm. Lamins have a scaffolding function for several nuclear processes such as transcription, chromatin organization and DNA replication, and maintain nuclear and cellular integrity. Mutations in the LMNA gene, encoding A-type lamins, can cause cardiac and skeletal muscle disease, lipodystrophy and premature ageing phenotypes. Hence, the integrity of the nuclear envelope seems essential for longevity. Furthermore, the laminopathies provide evidence that metabolism and ageing are as tightly linked in humans as they are in model organisms such as C. elegans. In this review, we elaborate on the structure and functions of nuclear lamins, the spectrum of syndromes related to mutations in nuclear envelope components and pathogenic concepts unifying these disorders.
[
Dev Cell,
2004]
Currently, perhaps the most significant biological problem is to understand the mechanisms of learning and memory, and many of the answers will come from molecular explanations of synaptic plasticity. Two new papers have established a surprising connection: the Anaphase Promoting Complex/Cyclosome (APC/C) has a second function in controlling local protein stability at synapses, and hence in the control of behavior (Juo and Kaplan, 2004; van Roessel et al., 2004).
[
Cell,
1996]
Anyone who has watched an early embryo develop cannot help but be awed by the choreography of the early cleavages. The orientation and timing of cleavage in an animal cell are always such that the cleavage furrow bisects the mitotic apparatus (MA) during telophase, thus ensuring the equal partitioning of daughter chromosomes. In addition, the regulation of cleavage plane orientation is necessary for correct partitioning of localized determinants to specific daughter cells, for optimal positioning of cells in developing embryos, and for morphogenesis in plants, which are not motile.
[
Science,
1998]
The Caenorhabditis elegans genome sequence was surveyed for transcription factor and signaling gene families that have been shown to regulate development in a variety of species. About 10 to 25 percent of the genes in most of the gene families already have been genetically analyzed in C. elegans, about half of the genes detect probable orthologs in other species, and about 10 to 25 percent of the genes are, at present, unique to C. elegans. Caenorhabditis elegans is also missing genes that are found in vertebrates and other invertebrates. Thus the genome sequence reveals universals in developmental control that are the legacy of metazoan complexity before the Cambrian explosion, as well as genes that have been more recently invented or lost in particular phylogenetic lineages.AD - Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA. ruvkun@frodo.mgh.harvard.eduFAU - Ruvkun, GAU - Ruvkun GFAU - Hobert, OAU - Hobert OLA - engPT - Journal ArticlePT - ReviewPT - Review, TutorialCY - UNITED STATESTA - ScienceJID - 0404511RN - 0 (Helminth Proteins)RN - 0 (Transcription Factors)SB - IM
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.