[
Dev Cell,
2004]
Currently, perhaps the most significant biological problem is to understand the mechanisms of learning and memory, and many of the answers will come from molecular explanations of synaptic plasticity. Two new papers have established a surprising connection: the Anaphase Promoting Complex/Cyclosome (APC/C) has a second function in controlling local protein stability at synapses, and hence in the control of behavior (Juo and Kaplan, 2004; van Roessel et al., 2004).
[
Cytokine Growth Factor Rev,
2001]
Based on their morphology and function, epithelial cells and neurons appear to have very little in common; however, growing evidence suggests that these two disparate cell types share an underlying polarization pathway responsible for sorting proteins to specific subcellular sites. An evolutionarily conserved complex of PDZ domain-containing proteins thought to be responsible for polarized protein localization has been identified from both brain and epithelial tissue, both from mammals and from the nematode C. elegans. Some of th most recent data on PDZ proteins and the proteins with which they interact are summarized. In particular, some of the more recently proposed models for their function in cells, and the in vivo and in vitro data that support these models are focused upon.
[
IUBMB Life,
2000]
In the past decade, important advances have been made in our knowledge of the composition of human RNase MRP and RNase P complexes. Both ribonucleoprotein particles function as endonucleases and contain RNA components that are structurally related. RNase MRP has been suggested to be involved in the processing of precursor rRNA; RNase P, in the maturation of tRNA. Here we give an overview of current data on the structure and function of human RNase MRP and RNase P particles, with emphasis on their molecular composition. At present, seven protein subunits, probably all associated with both ribonucleoprotein particles, have been isolated and their corresponding cDNAs cloned. Although no known structural motifs can be identified in the amino acid sequences of these proteins, the majority is clearly rich in basic residues. For two protein subunits, a cluster of basic amino acids have been shown to be involved in nucleolar accumulation, whereas another protein, which lacks such a region, probably enters the nucleolus by way of a piggyback mechanism. The binding regions for several of the protein subunits on the RNA have been identified, and the data have been used to create a putative structural model for the RNase MRP particle. The rather obscure situation concerning the association of the autoantigenic Th-40 protein and its possible relationship with one of the subunits, Rpp38, is discussed.
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.