-
[
Biochem Soc Trans,
2016]
Phosphatidylinositol (PI) is the precursor lipid for the synthesis of PI 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (PM) and is sequentially phosphorylated by the lipid kinases, PI 4-kinase and phosphatidylinositol 4-phosphate (PI4P)-5-kinase. Receptor-mediated hydrolysis of PI(4,5)P2 takes place at the PM but PI resynthesis occurs at the endoplasmic reticulum (ER). Thus PI(4,5)P2 resynthesis requires the reciprocal transport of two key intermediates, phosphatidic acid (PA) and PI between the ER and the PM. PI transfer proteins (PITPs), defined by the presence of the PITP domain, can facilitate lipid transfer between membranes; the PITP domain comprises a hydrophobic cavity with dual specificity but accommodates a single phospholipid molecule. The class II PITP, retinal degeneration typeB (RdgB) is a multi-domain protein and its PITP domain can bind and transfer PI and PA. In Drosophila photoreceptors, a well-defined G-protein-coupled phospholipase C (PLC) signalling pathway, phototransduction defects resulting from loss of RdgB can be rescued by expression of the PITP domain provided it is competent for both PI and PA transfer. We propose that RdgB proteins maintain PI(4,5)P2 homoeostasis after PLC activation by facilitating the reciprocal transport of PA and PI at ER-PM membrane contact sites.
-
[
Mol Cell,
2004]
Applying a combination of innovative approaches to understanding neuronal gene regulation in C. elegans, an article in the latest Developmental Cell (Wenick and Hobert, 2004) gives hope that reading the genome''s transcriptional regulatory code may one day be possible.
-
[
Physiol Rev,
1999]
The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradients across the PM, the membrane potential, and the transport stoichiometry. In most cells, three Na+ are exchanged for one Ca2+. In vertebrate photoreceptors, some neurons, and certain other cells, K+ is transported in the same direction as Ca2+, with a coupling ratio of four Na+ to one Ca2+ plus one K+. The exchanger kinetics are affected by nontransported Ca2+, Na+, protons, ATP, and diverse other modulators. Five genes that code for the exchangers have been identified in mammals: three in the Na+/Ca2+ exchanger family (NCX1, NCX2, and NCX3) and two in the Na+/Ca2+ plus K+ family (NCKX1 and NCKX2). Genes homologous to NCX1 have been identified in frog, squid, lobster, and Drosophila. In mammals, alternatively spliced variants of NCX1 have been identified; dominant expression of these variants is cell type specific, which suggests that the variations are involved in targeting and/or functional differences. In cardiac myocytes, and probably other cell types, the exchanger serves a housekeeping role by maintaining a low intracellular Ca2+ concentration; its possible role in cardiac excitation-contraction coupling is controversial. Cellular increases in Na+ concentration lead to increases in Ca2+ concentration mediated by the Na+/Ca2+ exchanger; this is important in the therapeutic action of cardiotonic steroids like digitalis. Similarly, alterations of Na+ and Ca2+ apparently modulate basolateral K+ conductance in some epithelia, signaling in some special sense organs (e.g., photoreceptors and olfactory receptors) and Ca2+-dependent secretion in neurons and in many secretory cells. The juxtaposition of PM and sarco(endo)plasmic reticulum membranes may permit the PM Na+/Ca2+ exchanger to regulate sarco(endo)plasmic reticulum Ca2+ stores and influence cellular Ca2+ signaling.
-
[
Hermann, Editeurs des Sciences et des Arts. Paris, France.,
2002]
L'espce Caenorhabditis elegans fut dcrite en 1900 Alger par E. Maupas, qui s'intressait son mode de reproduction hermaphrodite. Plus tard, vers le milieu du vingtime sicle, V. Nigon et ses collaboratuers Lyon tudirent les reorganizations cellulaires accompagnant la fecundation et les premiers clivages. J. Brun isola les preiers mutants morpholgiques.
-
[
J Microsc,
2013]
Correlative light and electron microscopy (CLEM) has recently gained increasing attention, because it enables the acquisition of dynamic as well as ultrastructural information about subcellular processes. It is the power of combining the two imaging modalities that gives additional information as compared to using the imaging techniques separately. Here, we briefly summarize two CLEM approaches for the analysis of cells in mitosis and cytokinesis.
-
[
Nat Rev Mol Cell Biol,
2014]
Many organs contain networks of epithelial tubes that transport gases or fluids. A lumen can be generated by tissue that enwraps a pre-existing extracellular space or it can arise de novo either between cells or within a single cell in a position where there was no space previously. Apparently distinct mechanisms of de novo lumen formation observed in vitro - in three-dimensional cultures of endothelial and Madin-Darby canine kidney (MDCK) cells - and in vivo - in zebrafish vasculature, Caenorhabditis elegans excretory cells and the Drosophila melanogaster trachea - in fact share many common features. In all systems, lumen formation involves the structured expansion of the apical plasma membrane through general mechanisms of vesicle transport and of microtubule and actin cytoskeleton regulation.
-
[
Crit Rev Food Sci Nutr,
2016]
Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome and more than 65% of the genes associated with humans. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes some methods to evaluate the effect of treatments on obesity and aging of this organism.
-
[
Annu Rev Neurosci,
1993]
Behavior arises through the interplay of innate properties of the nervous system, environmental stimuli, and experience. An opportunity to integrate neuronal and genetic approaches to study behavior is provided by the soil nematode Caenorhabditis elegans. C. elegans is attractive for study because of the simplicity and accessibility of its nervous system. The adult hermaphrodite is 1 mm long, and its nervous system is composed of only 302 neurons. The nucleus of each neuron can be identified in live animals by differential interference microscopy, and the cell lineage that gives rise to each of these neurons has been described in its entirety. C. elegans develops to adulthood in about three days at 25C, which facilitates observation of its
-
[
Cell Motil Cytoskeleton,
1991]
Microtubules are required for a variety of cellular processes, including mitosis, meiosis, cell motility, morphogenesis, and, in neurons, neurite outgrowth, axonal transport, and sensory transduction. One approach to the study of microtubule biology is to isolate mutations that disrupt microtubules; these mutations should identify genes and gene products that are important for microtubule structure and/or function. The phenotype resulting from the loss of a particular gene product also gives an indication of the role of that product. Genetic approaches have been particularly useful in the study of microtubules in Drosophila, Aspergillus, and yeast. In this review we summarize genetic and biochemical studies of microtubule function and structure in the nematode Caenorhabditis elegans.
-
[
Journal of Gerontology,
1998]
Vanfleteren and colleagues present an interesting example of environmental conditions altering the kinetics of survival. Most previous studies of survival in C. elegans have used abundant bacteria as a food source. Such studies have found that the Gompertz function (exponential growth in mortality rate with age) gives a relatively good fit to survival curves, but that there is some deceleration in the rate of growth of mortality later in the life span. Yulong Yang and I have completed dozens of studies of small populations of the wild-type strain, N2, as well as strains TJ401, TJ411, TJ412,and BA713 in the presence of abundant bacteria in liquid or on agar. Survival curves were better fit by Gompertz more often than by Weibull or logistic functions (unpublished observations).