-
[
1987]
Current knowledge of sterol biochemistry and physiology in nematodes is reviewed. Nematodes possess a nutritional requirement for sterol because they lack the capacity for de novo sterol biosynthesis. The free-living nematode Caenorhabditis elegans has recently been used as a model organism for investigation of nematode sterol metabolism. C. elegans is capable of removal of the C-24 alkyl substituent of plant sterols such as sitosterol and also possesses the remarkable ability to attach a methyl group at C-4 on the sterol nucleus. An azasteroid and several long-chain alkyl amines disrupt the phytosterol dealkylation pathway in C. elegans by inhibiting its *24-sterol reductase. These compounds inhibit growth and reproduction in certain parasitic nematodes and provide model compounds for development of novel nematode control
-
[
WormBook,
2005]
This chapter reviews analytical tools currently in use for protein classification, and gives an overview of the C. elegans proteome. Computational analysis of proteins relies heavily on hidden Markov models of protein families. Proteins can also be classified by predicted secondary or tertiary structures, hydrophobic profiles, compositional biases, or size ranges. Strictly orthologous protein families remain difficult to identify, except by skilled human labor. The InterPro and NCBI KOG classifications encompass 79% of C. elegans protein-coding genes; in both classifications, a small number of protein families account for a disproportionately large number of genes. C. elegans protein-coding genes include at least ~12,000 orthologs of C. briggsae genes, and at least ~4,400 orthologs of non-nematode eukaryotic genes. Some metazoan proteins conserved in other nematodes are absent from C. elegans. Conversely, 9% of C. elegans protein-coding genes are conserved among all metazoa or eukaryotes, yet have no known functions.
-
Normal development and homeostasis result from a tenuous balance between cell proliferation and cell death. Disruption of this balance, in favor of cell death in particular, could easily lead to pathological states in postmitotic organs such as the adult brain. For example, many neurodegenerative disorders are characterized by the premature death of specific subsets of neurons, which gives rise to their full clinical spectra. Although a complete understanding of the selective cell degeneration in these conditions is still lacking, recent observations suggest that it may occur through apoptosis, a gene-directed type of cell death. In many cases, cell death by apoptosis requires an active role by the dying cells, because apoptosis is most often significantly blocked or delayed by inhibitors of RNA or protein synthesis. This genetic regulation of apoptosis offers a potential for therapeutic intervention and further assessment of apoptotic mechanisms in manifestations of neuropathology is warranted. However, employing conventional molecular and biochemical approaches, attempts to determine the genetic machinery responsible for specifying which cells live and which cells die have not always been successful in vertebrate systems. One organism in which programmed cell death (PCD), a physiological counterpart of apoptosis, has been extensively examined is the nematode Caenorhabditis elegans....
-
[
WormBook,
2005]
The features that differentiate the C. elegans male from the hermaphrodite arise during postembryonic development. The major male mating structures, consisting of the blunt tail with fan and rays, the hook, the spicules and proctodeum, and the thin body, form just before the last larval molt. Male and hermaphrodite embryogenesis are similar but some essential male cell fates are already established at hatching. The male mating structures arise from three important sets of male-specific blast cells. These cells generate a total of 205 male-specific somatic cells, including 89 neurons, 36 neuronal support cells, 41 muscles, 23 cells involved in differentiating the hindgut, and 16 hypodermal cells associated with mating structures. Genetic and molecular studies have identified many genes required for male development, most of which also function in the hermaphrodite. Cell-cell interactions play a role in patterning all three of the generative tissues. Male-specific neurons, including sensory neurons of the rays, hook, post-cloacal sensilla, and spicules, differentiate at the end of the last larval stage and send out axons to make connections into the existing neuropil, greatly enlarging the posterior ganglia. The hindgut is highly differentiated to accommodate the spicules and the joining of the reproductive tract to the cloaca. A complex male-specific program generates many new muscles for copulation. The cell lineage and genetic program that gives rise to the one-armed male gonad appears to be a variation on that of the hermaphrodite.
-
[
Methods Cell Biol,
2012]
In Caenorhabdatis elegans as in other animals, fat regulation reflects the outcome of behavioral, physiological, and metabolic processes. The amenability of C. elegans to experimentation has led to utilization of this organism for elucidating the complex homeostatic mechanisms that underlie energy balance in intact organisms. The optical advantages of C. elegans further offer the possibility of studying cell biological mechanisms of fat uptake, transport, storage, and utilization, perhaps in real time. Here, we discuss the rationale as well as advantages and potential pitfalls of methods used thus far to study metabolism and fat regulation, specifically triglyceride metabolism, in C. elegans. We provide detailed methods for visualization of fat depots in fixed animals using histochemical stains and in live animals by vital dyes. Protocols are provided and discussed for chloroform-based extraction of total lipids from C. elegans homogenates used to assess total triglyceride or phospholipid content by methods such as thin-layer chromatography or used to obtain fatty acid profiles by methods such as gas chromatography/mass spectrometry. Additionally, protocols are provided for the determination of rates of intestinal fatty acid uptake and fatty acid breakdown by -oxidation. Finally, we discuss methods for determining rates of de novo fat synthesis and Raman scattering approaches that have recently been employed to investigate C. elegans lipids without reliance on invasive techniques. As the C. elegans fat field is relatively new, we anticipate that the indicated methods will likely be improved upon and expanded as additional researchers enter this field.
-
[
1985]
Since the last review in this series, several important projects relating to aging research in Caenorhabditis elegans have been completed. A more detailed review of the field is available. A major focus of research in Caenorhabditis elegans over the last few years has been on development, particularly the cell lineage. The entire cell lineage of the adult hermaphrodite has been described. The genetic loci coding for myosin, for rRNA, for actin, collagen, and oocyte yolk proteins, and a major family of proteins synthesized in the sperm have been isolated using recombinant DNA techniques. A transposable element has been identified, and studies aimed at using this element as a mutagen are underway. A good start has been made in generating an ordered series of overlapping recombinant clones of the entire genome; several labs are developing techniques for transformation of the worm. Aging research has also made progress over the last few years. Single-gene mutants and selectively bred stocks displaying longer lifespans have been isolated. A number of new markers of senescence have been described. Programmed cell death during development of the worm has been a major focus of research, and mutants altering this process have been isolated. There are still a few problems for aging research: there is not a single agreed-upon method of culturing biochemical quantities of worms that also gives lifespans comparable to those of small-scale cultures; and observed differences in aging parameters that are general versus those that are due to culture conditions are still under dispute. Two methods of growth (axenic and monoxenic) are still commonly used, for the most part always in distinct laboratories. All of these findings will be described within.
-
[
WormBook,
2006]
Through genetic analyses, the function of genes is investigated by studying organisms where gene function is altered. In classical forward genetic screening, individuals are treated with mutagens to induce DNA lesions and mutants with a phenotype of interest are sought. After a mutant is found, the gene mutated is identified through standard molecular techniques. Detailed studies of the mutant phenotype coupled with molecular analyses of the gene allows elucidation of the gene's function. Forward genetics has been responsible for our understanding of many biological processes and is an excellent method for identifying genes that function in a particular process.In reverse genetics, the functional study of a gene starts with the gene sequence rather than a mutant phenotype. Using various techniques, a gene's function is altered and the effect on the development or behaviour of the organism is analysed. Reverse genetics is an important complement to forward genetics. For example, using reverse genetics, one can investigate the function of all genes in a gene family, something not easily done with forward genetics. Further, one can study the function of a gene found to be involved in a process of interest in another organism, but for which no forward genetic mutants have yet been identified. Finally, the vast majority of genes have not yet been mutated in most organisms and reverse genetics allows their study. The availability of complete genome sequences combined with reverse genetics can allow every gene to be studied.This chapter gives detailed protocols for the two main methods of perturbing gene function in C. elegans: RNA interference and the creation of deletion mutants. Either technique can be applied to the study of individual genes. With less than a day of actual work, RNAi creates a knockdown of gene function without altering the organism's DNA (see below). In contrast, with about a month of work, a deletion mutation permanently removes all gene function. Deciding which technique to use will depend on the nature of the experiment. The techniques can also be combined, where RNAi is used for rapid screening of loss of function phenotypes and then deletion mutants are made to study genes of particular interest. RNAi can also be carried out on a global scale, where knockdown of (nearly) every gene is tested for inducing a phenotype of interest. In this case, the reverse genetics technique of RNAi can be thought of as a forward genetic screening tool.