-
[
BMC Genomics,
2011]
BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs with important roles in regulating gene expression. Recent studies indicate that transcription and cleavage of miRNA are coupled, and that chromatin structure may influence miRNA transcription. However, little is known about the relationship between the chromatin structure and cleavage of pre-miRNA from pri-miRNA. RESULTS: By analysis of genome-wide nucleosome positioning data sets from human and Caenorhabditis elegans (C. elegans), we found an enrichment of positioned nucleosome on pre-miRNA genomic sequences, which is highly correlated with GC content within pre-miRNA. In addition, obvious enrichments of three histone modifications (H2BK5me1, H3K36me3 and H4K20me1) as well as RNA Polymerase II (RNAPII) were observed on pre-miRNA genomic sequences corresponding to the active-promoter miRNAs and expressed miRNAs. CONCLUSION: Our results revealed the chromatin structure characteristics of pre-miRNA genomic sequences, and implied potential mechanisms that can recognize these characteristics, thus improving pre-miRNA cleavage.
-
[
IEEE Trans Med Imaging,
2012]
In in vivo optical projection tomography (OPT), object motion will significantly reduce the quality and resolution of the reconstructed image. Based on the well-known Helgason-Ludwig consistency condition (HLCC), we propose a novel method for motion correction in OPT under parallel beam illumination. The method estimates object motion from projection data directly and does not require any other additional information, which results in a straightforward implementation. We decompose object movement into translation and rotation, and discuss how to correct for both translation and general motion simultaneously. Since finding the center of rotation accurately is critical in OPT, we also point out that the system's geometrical offset can be considered as object translation and therefore also calibrated through the translation estimation method. In order to verify the algorithm effectiveness, both simulated and in vivo OPT experiments are performed. Our results demonstrate that the proposed approach is capable of decreasing movement artifacts significantly thus providing high quality reconstructed images in the presence of object motion.
-
[
J Agric Food Chem,
2017]
There are no effective medications for delaying the progress of Alzheimer's disease (AD), the most common neurodegenerative disease in the world. In this study, our results with C. elegans showed that rose essential oil (REO) significantly inhibited AD-like symptoms of worm paralysis and hypersensivity to exogenous 5-HT in a dose-dependent manner. Its main components of -citronellol and geraniol acted less effectively than the oil itself. REO significantly suppressed A deposits and reduced the A oligomers to alleviate the toxicity induced by A over-expression. Additionally, the inhibitory effects of REO on worm paralysis phenotype were abrogated only after
skn-1 RNAi, but not
daf-16 and
hsf-1 RNAi. REO markedly activated the expression of
gst-4 gene, which further supported SKN-1 signaling pathway was involved in the therapeutic effect of REO on AD C. elegans. Our results provided direct evidence on REO for treating AD on an organism level and relative theoretical foundation for reshaping medicinal products of REO in the future.
-
[
Biochem J,
2004]
We have previously reported three Caenorhabditis elegans genes (
gly-12,
gly-13 and
gly-14) encoding enzymatically active UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid, paucimannose and complex N-glycan synthesis. We now describe a worm with null mutations in all three GnT I genes,
gly-14 (III);
gly-12 gly13 (X). The triple "knock out" (TKO) worms have a normal phenotype although they do not express GnT I activity and do not synthesize 31 paucimannose, complex and fucosylated oligomannose N-glycans present in the wild type worm. The TKO worm has increased amounts of non-fucosylated oligomannose N-glycan structures, a finding consistent with the site of GnT I action. Five fucosylated oligomannose N-glycan structures were observed in TKO but not wild type worms indicating the presence of unusual GnT I-independent fucosyltransferases. It is concluded that wild type C.elegans, under laboratory conditions, makes a large number of GnT I-dependent N-glycans that are not essential for normal worm development. Survival of the TKO worm may be compromised if the worm is exposed to environmental stress or if one or more other genes are non-functional. The TKO worm may therefore provide a valuable tool for identifying genes that require an active GnT I for optimum function.
-
[
Chem Biol,
2015]
Rising antibiotic resistance means that alternative antibacterial strategies are sorely needed. In this issue, Zhu etal. (2015) report the use of a Caenorhabditis elegans model to validate the Pseudomonas aeruginosa virulence factor LasB as a potential therapeutic target and to identify a LasB inhibitor with invivo efficacy.
-
[
Dev Cell,
2021]
Understanding how nutrient-sensitive signaling pathways regulate development and aging is an active area of research. In this issue of Developmental Cell,Zhu and colleagues (2021) identify a specific monomethylated branched-chain fatty acid that overrides nutrient deprivation signaling and activates mTORC1 in C.elegans and mammalian cells.
-
[
Dev Cell,
2016]
Arp2/3-dependent branched actin networks drive membrane protrusions, with WAVE being recognized as the critical Arp2/3 activator in this process. In this issue of Developmental Cell, Zhu etal. (2016) demonstrate that WASP, an Arp2/3 activator mostly involved in endocytosis, collaborates with WAVE to promote migration of neuroblasts in Caenorhabditis elegans.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
Lou Y, Haque A, Freyzon Y, Farese RV, Terry-Kantor E, Hofbauer HF, Termine D, Welte MA, Barrasa MI, Imberdis T, Noble T, Lindquist S, Clish CB, Jaenisch R, Pincus D, Nuber S, Sandoe J, Kohlwein SD, Kim TE, Ho GPH, Ramalingam N, Walther TC, Baru V, Selkoe D, Srinivasan S, Landgraf D, Soldner F, Dettmer U, Fanning S, Becuwe M, Newby G
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
J Biol Chem,
1998]
A novel L-3-hydroxyacyl-CoA dehydrogenase from human brain has been cloned, expressed, purified, and characterized. This enzyme is a homotetramer with a molecular mass of 108 kDa. Its subunit consists of 261 amino acid residues and has structural features characteristic of short chain dehydrogenases. It was found that the amino acid sequence of this human brain enzyme is identical to that of an endoplasmic reticulum amyloid beta-peptide-binding protein (ERAB), which mediates neurotoxicity in Alzheimer's disease (Yan, S. D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern, D. (1997) Nature 389, 689-695). The purification of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase made it possible to characterize the structural and catalytic properties of ERAB. This NAD+-dependent dehydrogenase catalyzes the reversible oxidation of L-3-hydroxyacyl-CoAs to form 3-ketoacyl-CoAs, but it does not act on the D-isomers. The catalytic rate constant of the purified enzyme was estimated to be 37 s-1 with apparent Km values of 89 and 20 microM for acetoacetyl-CoA and NADH, respectively. The activity ratio of this enzyme for substrates with chain lengths of C4, C8, and C16 was approximately 1:2:2. The human short chain L-3-hydroxyacyl-CoA dehydrogenase gene is organized into six exons and five introns and maps to chromosome Xp11.2. The amino-terminal NAD-binding region of the dehydrogenase is encoded by the first three exons, whereas the other exons code for the carboxyl-terminal substrate-binding region harboring putative catalytic residues. The results of this study lead to the conclusion that ERAB involved in neuronal dysfunction is encoded by the human short chain L-3-hydroxyacyl-CoA dehydrogenase gene.