[
Methods Mol Biol,
2013]
The nematode Caenorhabditis elegans secretes a family of water-soluble small molecules, known as the ascarosides, into its environment and uses these ascarosides in chemical communication. The ascarosides are derivatives of the 3,6-dideoxysugar ascarylose, modified with different fatty acid-derived side chains. C. elegans uses specific ascarosides, which are together known as the dauer pheromone, to trigger entry into the stress-resistant dauer larval stage. In addition, C. elegans uses specific ascarosides to control certain behaviors, including mating attraction, aggregation, and avoidance. Although in general the concentration of the ascarosides in the environment increases with population density, C. elegans can vary the types and amounts of ascarosides that it secretes depending on the culture conditions under which it has been grown and its developmental history. Here, we describe how to grow high-density worm cultures and the bacterial food for those cultures, as well as how to extract the culture medium to generate a crude pheromone extract. Then, we discuss how to analyze the types and amounts of ascarosides in that extract using mass spectrometry and NMR spectroscopy.
[
1987]
Work in our laboratory over the past several years has focused on the nature of early determinative decisions in embryos of the free-living nematode Caenorhabditis elegans. Two of these decisions regard determination of sex and determination of the level of X-chromosome expression. C. elegans has two sexes, self-fertilizing hermaphrodites and males. Hermaphrodites normally have two X chromosomes, and males have only one (there is no Y chromosome). Genetic and molecular evidence suggest that C. elegans compensates for this difference in X dosage, not by X inactivation as in mammals, but rather by global regulation of the X chromosome as in Drosophila; that is, X-linked genes are expressed at a higher level per chromosome in 1X than 2X animals, so that levels of X expression are similar in the two sexes. Also as in Drosophila, the primary signal that dictates both sex determination and level of X expression in C. elegans is the ration of the number of X chromosomes to the number of sets of autosomes (X/A ratio) rather than the absolute number of X chromosomes.|