[
Semin Cell Dev Biol,
2002]
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell Polarities, of cells that undergo asymmetric cell divisions. In addition, WRM-1 does not interact with the canonical beta-catenin binding site in POP-1/Tcf. Thus, Wnt signaling through WRM-1 is noncanonical and, except for one division that might not include any of the three C. elegans beta-calenin, controls cell polarity in C. elegans.
[
J Cell Sci,
2017]
The Slit-Robo GTPase-activating proteins (srGAPs) were first identified as potential Slit-Robo effectors that influence growth cone guidance. Given their N-terminal F-BAR, central GAP and C-terminal SH3 domains, srGAPs have the potential to affect membrane dynamics, Rho family GTPase activity and other binding partners. Recent research has clarified how srGAP family members act in distinct ways at the cell membrane, and has expanded our understanding of the roles of srGAPs in neuronal and non-neuronal cells. Gene duplication of the human-specific paralog of srGAP2 has resulted in srGAP2 family proteins that may have increased the density of dendritic spines and promoted neoteny of the human brain during crucial periods of human evolution, underscoring the importance of srGAPs in the unique sculpting of the human brain. Importantly, srGAPs also play roles outside of the nervous system, including during contact inhibition of cell movement and in establishing and maintaining cell adhesions in epithelia. Changes in srGAP expression may contribute to neurodevelopmental disorders, cancer metastasis and inflammation. As discussed in this Review, much remains to be discovered about how this interesting family of proteins functions in a diverse set of processes in metazoans and the functional roles srGAPs play in human disease.
[
Bioessays,
2002]
Wnt glycoproteins are signaling molecules that control a wide range of developmental processes in organisms ranging from the simple metazoan Hydra to vertebrates. Wnt signaling also plays a key role in the development of the nematode C. elegans, and is involved in cell fate specification and determination of cell polarity and cell migration. Surprisingly, the first genetic studies of Wnt signaling in C. elegans revealed major differences with the established (canonical) Wnt signaling pathways of Drosophila and vertebrates. Thus, the Wnt-dependent induction of endoderm in the early embryo and the specification of several asymmetric cell divisions during larval development are mediated by as yet novel Wnt signaling pathways that repress, rather than activate the TCF/LEF-1 transcription factor POP-1. Recently, however, it has been shown that, in addition to these divergent Wnt pathways, C. elegans also has a canonical Wnt pathway that converts POP-1 into an activator and controls the expression of several homeobox genes. Interestingly, these different Wnt pathways use distinct beta-catenins to control POP-1 function: the endoderm induction pathway requires the beta-catenin WRM-1 and parallel input from a mitogen-activated kinase (MAPK) pathway to downregulate POP-1, whereas the canonical Wnt pathway employs the beta-catenin BAR-1 to activate Wnt target gene expression.
[
WormBook,
2005]
The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A ''canonical'' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the canonical pathway, Wnt binding leads to the stabilization of the transcription factor beta-catenin, which enters the nucleus to regulate Wnt pathway target genes. However, Wnt binding also acts through beta-catenin-independent, noncanonical pathways, such as the planar cell polarity (PCP) pathway and a pathway involving Ca 2+ signaling. This chapter examines our current understanding of Wnt signaling and Wnt-mediated processes in the nematode C. elegans. Like other species, the C. elegans genome encodes multiple genes for Wnt ligands (five) and Wnt receptors (four frizzleds, one Ryk/Derailed). Unlike vertebrates or Drosophila, the C. elegans genome encodes three beta-catenin genes, which appear to have distinct functions in Wnt signaling and cell adhesion. Canonical Wnt signaling clearly exists in C. elegans, utilizing the beta-catenin BAR-1 . However, a noncanonical pathway utilizing the beta-catenin WRM-1 also exists, and to date a similar pathway has not been described in other species. Evidence for beta-catenin independent noncanonical Wnt signaling is currently limited. The role of Wnt signaling in over a dozen C. elegans developmental processes, including the regulation of cell fate, polarity and migration, is described.