-
[
Biochem Biophys Res Commun,
1999]
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.
-
Shimono K, Honda N, Hasegawa T, Takahashi M, Hashimoto N, Sudo Y, Hayashi S, Mizutani K, Miyauchi S, Yamamoto M, Takagi S, Yamashita K, Tsukamoto T, Murata T
[
J Biol Chem,
2016]
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.
-
[
Nematologica,
1977]
SEM observations of adult Caenorhabditis briggsae females showed differences between young and old nematodes. In young nematodes the cuticle was generally smooth, whereas in old ones it was wrinkled. Deirids were located at the level of the excretory pore in the lateral field. They were distinct in young nematodes but indistinct in old ones. The oral opening was formed by six lips, which were closed in old nematodes and open in young ones. The vulva possessed two semi-circular lips and was bordered by two lateral flaps. These lips were smooth in young specimens and wrinkled in old ones. Cryofractures of old nematodes showed cavities in the intestinal epithelium corresponding to areas in which age pigment granules normally occur. No such cavities were seen in young nematodes.
-
[
Elife,
2019]
Young <i>Caenorhabditis elegans</i> hermaphrodites use their own sperm to protect against the negative consequences of mating.
-
[
Biochemistry,
2007]
High-molecular weight thioredoxin reductases (TRs) catalyze the reduction of the redox-active disulfide bond of thioredoxin, but an important difference in the TR family is the sequence of the C-terminal redox-active tetrapeptide that interacts directly with thioredoxin, especially the presence or absence of a selenocysteine (Sec) residue in this tetrapeptide. In this study, we have employed protein engineering techniques to investigate the C-terminal redox-active tetrapeptides of three different TRs: mouse mitochondrial TR (mTR3), Drosophila melanogaster TR (DmTR), and the mitochondrial TR from Caenorhabditis elegans (CeTR2), which have C-terminal tetrapeptide sequences of Gly-Cys-Sec-Gly, Ser-Cys-Cys-Ser, and Gly-Cys-Cys-Gly, respectively. Three different types of mutations and chemical modifications were performed in this study: insertion of alanine residues between the cysteine residues of the Cys-Cys or Cys-Sec dyads, modification of the charge at the C-terminus, and altering the position of the Sec residue in the mammalian enzyme. The results show that mTR3 is quite accommodating to insertion of alanine residues into the Cys-Sec dyad, with only a 4-6-fold drop in catalytic activity. In contrast, the activity of both DmTR and CeTR2 was reduced 100-300-fold when alanine residues were inserted into the Cys-Cys dyad. We have tested the importance of a salt bridge between the C-terminus and a basic residue that was proposed for orienting the Cys-Sec dyad of mTR3 for proper catalytic position by changing the C-terminal carboxylate to a carboxamide. The result is an enzyme with twice the activity as the wild-type mammalian enzyme. A similar result was achieved when the C-terminal carboxylate of DmTR was converted to a hydroxamic acid or a thiocarboxylate. Last, reversing the positions of the Cys and Sec residues in the catalytic dyad resulted in a 100-fold loss of catalytic activity. Taken together, the results support our previous model of Sec as the leaving group during reduction of the C-terminus during the catalytic cycle.
-
[
Journal of Nematology,
1972]
The specific gravity of old Caenorhabditis briggsae was shown to be greater than that of young nematodes. The possible explanations for this age-associated change are discussed.
-
[
Sci Rep,
2020]
Maternal behaviors benefit the survival of young, contributing directly to the mother's reproductive fitness. An extreme form of this is seen in matriphagy, when a mother performs the ultimate sacrifice and offers her body as a meal for her young. Whether matriphagy offers only a single energy-rich meal or another possible benefit to the young is unknown. Here, we characterized the toxicity of a bacterial secondary metabolite, namely, violacein, in Caenorhabditis elegans and found it is not only toxic towards adults, but also arrests growth and development of C. elegans larvae. To counteract this, C. elegans resorted to matriphagy, with the mothers holding their eggs within their bodies and hatching the young larvae internally, which eventually led to the mothers' death. This violacein-induced matriphagy alleviated some of the toxic effects of violacein, allowing a portion of the internally-hatched young to bypass developmental arrest. Using genetic and pharmacological experiments, we found the consumption of oleate, a monounsaturated fatty acid produced by the mother, during matriphagy is partially responsible. As such, our study provides experimental evidence of why such a drastic and peculiar maternal behavior may have arisen in nematode natural habitats.
-
[
Metallomics,
2014]
Aberrant regulation of transition metals and the resultant disregulation of neuronal reactive oxygen species (ROS) are considered significant in the etiology of Alzheimer's disease (AD). We determined the solution structure of the D2 domain of APL-1 (APL1-D2), the Caenorhabditis elegans ortholog of the amyloid precursor protein domain 2 (APP-D2). The copper binding affinities of APL1-D2 and APP-D2 were estimated and the ability of their copper complexes to promote formation of ROS was tested. The two protein domains are isostructural, consisting of a three-stranded -sheet packed against a short -helix in a fold. A six-residue insert in APL1-D2, absent in APP-D2, forms an extended loop. The putative copper binding ligands in APP-D2 are not conserved in APL1-D2 and this delineates a clear difference between them. APL1-D2 and APP-D2 bind one equivalent of Cu(I) weakly, with dissociation constants KD 10(-8.6) M and ~10(-10) M, respectively, and up to two equivalents of Cu(II) with KD values in the range 10(-6) -10(-8) M. The relative abilities of APL1-D2, APP-D2 and amyloid- (A) copper complexes to generate H2O2 correspond to their copper binding affinities. Copper affinities for A (KD ~ 10(-10) M for both Cu(I) and Cu(II)) and APP-D2 are in a range allowing redox cycling to occur, albeit less efficiently for APP-D2. However, APL1-D2 binds Cu(I) and Cu(II) too weakly to sustain catalysis which further suggests that it plays no significant role in copper handling in C. elegans. Overall, the data are consistent with a possible role in copper homeostasis for APP-D2, but not APL1-D2.
-
[
Can J Zool,
1982]
Dauerlarvae are reportedly adapted to withstand adverse environmental conditions. Current knowledge of the mechanisms underlying the unique characteristics of dauerlarvae is limited. This study characterizes superoxide dismutase (SODase) activity in several developmental stages of Caenorhabditis elegans (originally described by E. Maupas in 1900). Extracts of dauerlarvae have 17.1 units SODase per milligram protein, as compared with 4.3 and 3.8 units per milligram for obligate larvae and young adults, respectively. Since oxygen consumption in dauerlarvae is lower than that of young adults, the ratio of SODase to oxygen consumption is markedly higher in dauerlarvae than in young adults. The elevated SODase might contribute to an increased resistance to a variety of environmental stresses, including radiation. Furthermore, the elevation of this activity relative to metabolic rate could account for the long life-span of dauerlarvae.
-
[
Cell Genom,
2023]
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.