-
[
Cancer Research,
1999]
It is an honor and a great pleasure to introduce Dr. Robert Horvitz to you as the 1998 recipient of the Alfred Sloan Prize of the General Motors Cancer Research Foundation. Let me begin by telling you a little bit about Bob's
-
[
WormBook,
2005]
Mutations in many genes can result in a similar phenotype. Finding a number of mutants with the same phenotype tells you little about how many genes you are dealing with, and how mutable those genes are until you can assign those mutations to genetic loci. The genetic assay for gene assignment is called the complementation test. The simplicity and robustness of this test makes it a fundamental genetic tool for gene assignment. However, there are occasional unexpected outcomes from this test that bear explanation. This chapter reviews the complementation test and its various outcomes, highlighting relatively rare but nonetheless interesting exceptions such as intragenic complementation and non-allelic non-complementation.
-
[
Exp Gerontol,
2006]
Caenorhabditis elegans has been used to model aspects of a number of age-associated neurodegenerative diseases, including Alzheimer''s, Parkinson''s and Huntington''s diseases. These models have typically involved the transgenic expression of disease-associated human proteins. Here I describe my laboratory''s specific experience engineering C. elegans models of Alzheimer''s disease, and give a general consideration of the advantages and disadvantages of these C. elegans models. The type of insights that might be gained from using these (relatively) simple models are highlighted. In particular, I consider the potential these models have for uncovering common and unique fundamental toxic mechanisms underlying human neurodegenerative diseases.
-
[
The New York Times,
1997]
His tall figure bent over a computer screen in his laboratory at the Massachusetts General Hospital, Dr. Gary Ruvkun rummages through a distant genetic data base for matches to a gene he believes is involved in diabetes. ?You learn how to read these as they are ratcheting by,? he says, while lines of data streak up his screen. ?I think MTV is good training.?
-
[
Methods Cell Biol,
1995]
This chapter is devoted to providing information on techniques applicable to studying transcription and translation in Caenorhabditis elegans. These techniques are constantly evolving and being passed among workers, each making improvements or adaptations. None of the techniques discussed below are original, but, rather, have emerged from a variety of sources over the years, making it difficult to trace their origin or give credit to the originators. Although each technique has been used successfully, for each there are alternative methods available in the literature that work equally well. In fact, depending on the available resources, you might find that an alternative technique suits your needs and facilities better than the one described below. For this reason, the procedures discussed below are usually accompanied by one or more references that will allow you to look at other, related methods. Where appropriate, there will also be a discussion of factors to consider when
-
[
Curr Biol,
2001]
When meiotic cells complete S phase, homologous chromosomes pair, synapse and undergo recombination. A checkpoint protein is somehow required for meiotic chromosome pairing in C. elegans, thus providing a direct link between S phase and the rest of the meiotic program.
-
[
Toxins (Basel),
2016]
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria's ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria's acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
-
[
2017]
Caenorhabditis elegans is a 1-mm-long free-living nematode that feeds on bacteria. The feeding organ of C. elegans is a pharynx, a neuromuscular tube responsible for sucking bacteria into the worm from outside, concentrating them, and grinding them up (Doncaster 1962, Seymour et al. 1983). The basic mechanics and the neurons and muscles used to execute feeding motion are important for understanding several feeding behaviors and are therefore briefly described. More details regarding cellular and nuclear composition, the structure, electrophysiology, and the molecular components can be found in Avery and You (2012).
-
[
WormBook,
2007]
Because of their free-living life cycle alternatives, Strongyloides and related nematode parasites may represent the best models for translating C. elegans science to the study of nematode parasitism. S. stercoralis, a significant pathogen of humans, can be maintained in laboratory dogs and gerbils. Biosafety precautions necessary for work with S. stercoralis, though unfamiliar to many C. elegans researchers, are straightforward and easily accomplished. Although specialized methods are necessary for large-scale culture of the free-living stages of S. stercoralis, small-scale cultures for experimental purposes may be undertaken using minor modifications of standard C. elegans methods. Similarly, the morphological similarities between C. elegans and the free-living stages of S. stercoralis allow investigational methods such as laser cell ablation and DNA transformation by gonadal microinjection to be easily adapted from C. elegans to S. stercoralis. Comparative studies employing these methods have yielded new insights into the neuronal control of the infective process in parasites and its similarity to regulation of dauer development in C. elegans. Furthermore, we have developed a practical method for transient transformation of S. stercoralis with vector constructs having various tissue- and cell-specific expression patterns and have assembled these into a modular vector kit for distribution to the community.
-
[
Ann Pharm Fr,
2006]
The Nematode Caenorhabditis elegans (C. elegans) is an established model increasingly used for studying human disease pathogenesis. C. elegans models are based on the mutagenesis of human disease genes conserved in this Nematode or on the transgenesis with disease genes not conserved in C. elegans. Genetic examinations will give new insights on the cellular and molecular mechanisms that are altered in some neurodegenerative diseases like Duchenne''s muscular dystrophy, Huntington''s disease and Alzheimer''s disease. C. elegans may be used for primary screening of new compounds that may be used as drugs in these diseases.