-
[
Biochem Biophys Res Commun,
2006]
The majority of endogenous reactive oxygen species (ROS) are produced in the mitochondrial respiratory chain. An imbalance in ROS production alters the intracellular redox homeostasis, triggers DNA damage, and contributes to cancer development and progression. This study identified a novel protein, reactive oxygen species modulator 1 (Romo1), which is localized in the mitochondria. Romo1 was found to increase the level of ROS in the cells. Increased Romo1 expression was observed in various cancer cell lines. This suggests that the increased Romo1 expression during cancer progression may cause persistent oxidative stress to tumor cells, which can increase their malignancy.
-
[
Biochem Biophys Res Commun,
2008]
Low levels of endogenous reactive oxygen species (ROS) originating from NADPH oxidase have been implicated in various signaling pathways induced by growth factors and mediated by cytokines. However, the main source of ROS is known to be the mitochondria, and increased levels of ROS from the mitochondria have been observed in many cancer cells. Thus far, the mechanism of ROS production in cancer cell proliferation in the mitochondria is not well-understood. We recently identified a novel protein, ROS modulator 1 (Romo1), and reported that increased expression of Romo1-triggered ROS production in the mitochondria. The experiments conducted in the present study showed that Romo1-derived ROS were indispensable for the proliferation of both normal and cancer cells. Furthermore, whilst cell growth was inhibited by blocking the ERK pathway in cells transfected with siRNA directed against Romo1, the cell growth was recovered by addition of exogenous hydrogen peroxide. The results of this study suggest that Romo1-induced ROS may play an important role in redox signaling in cancer cells.
-
[
J Biol Chem,
2008]
Persistent accumulation of DNA damage induced by reactive oxygen species (ROS) is proposed to be a major contributor toward the aging process. Furthermore, an increase in age-associated ROS is strongly correlated with aging in various species, including humans. Here we showed that the enforced expression of the ROS modulator 1 (Romo1) triggered premature senescence by ROS production, and this also contributed toward induction of DNA damage. Romo1-derived ROS was found to originate in the mitochondrial electron transport chain. Romo1 expression gradually increased in proportion to population doublings of IMR-90 human fibroblasts. An increase in ROS production in these cells with high population doubling was blocked by the Romo1 knockdown using Romo1 small interfering RNA. Romo1 knockdown also inhibited the progression of replicative senescence. Based on these results, we suggest that age-related ROS levels increase, and this contributes to replicative senescence, which is directly associated with Romo1 expression.
-
[
Biochem Biophys Res Commun,
2007]
While acute oxidative stress triggers cell apoptosis or necrosis, persistent oxidative stress induces genomic instability and has been implicated in tumor progression and drug resistance. In a previous report, we demonstrated that reactive oxygen species modulator 1 (Romo1) expression was up-regulated in most cancer cell lines and suggested that increased Romo1 expression might confer chronic oxidative stress to tumor cells. In this study, we show that enforced Romo1 expression induces reactive oxygen species (ROS) production in the mitochondria leading to massive cell death. However, tumor cells that adapt to oxidative stress by increasing manganese superoxide dismutase (MnSOD), Prx I, and Bcl-2 showed drug resistance to 5-FU. To elucidate the relationship between 5-FU-induced ROS production and Romo1 expression, Romo1 siRNA was used to inhibit 5-FU-triggered Romo1 induction. Romo1 siRNA treatment efficiently blocked 5-FU-induced ROS generation, demonstrating that 5-FU treatment stimulated ROS production through Romo1 induction. Based on these results we suggest that cellular adaptive response to Romo1-induced ROS is another mechanism of drug resistance to 5-FU and Romo1 expression may provide a new clinical implication in drug resistance of cancer chemotherapy.
-
[
Mol Biol Evol,
2012]
Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing. The basic organization of teneurins is highly conserved in Bilateria: all teneurins have epidermal growth factor (EGF) repeats, a cysteine-rich domain, and a large region identical in organization to the carboxy-half of prokaryotic YD-repeat proteins. Teneurins were not found in the genomes of sponges, cnidarians, or placozoa, but the choanoflagellate Monosiga brevicollis has a gene encoding a predicted teneurin with a transmembrane domain, EGF repeats, a cysteine-rich domain, and a region homologous to YD-repeat proteins. Further examination revealed that most of the extracellular domain of the M. brevicollis teneurin is encoded on a single huge 6,829-bp exon and that the cysteine-rich domain is similar to sequences found in an enzyme expressed by the diatom Phaeodactylum tricornutum. This leads us to suggest that teneurins are complex hybrid fusion proteins that evolved in a choanoflagellate via horizontal gene transfer from both a prokaryotic gene and a diatom or algal gene, perhaps to improve the capacity of the choanoflagellate to bind to its prokaryotic prey. As choanoflagellates are considered to be the closest living relatives of animals, the expression of a primitive teneurin by an ancestral choanoflagellate may have facilitated the evolution of multicellularity and complex histogenesis in metazoa.