[
Journal of Gerontology,
1998]
Vanfleteren and colleagues present an interesting example of environmental conditions altering the kinetics of survival. Most previous studies of survival in C. elegans have used abundant bacteria as a food source. Such studies have found that the Gompertz function (exponential growth in mortality rate with age) gives a relatively good fit to survival curves, but that there is some deceleration in the rate of growth of mortality later in the life span. Yulong Yang and I have completed dozens of studies of small populations of the wild-type strain, N2, as well as strains TJ401, TJ411, TJ412,and BA713 in the presence of abundant bacteria in liquid or on agar. Survival curves were better fit by Gompertz more often than by Weibull or logistic functions (unpublished observations).
[
RNA Biol,
2014]
Small RNA programmed Argonautes are sophisticated cellular effector platforms known to be involved in a diverse array of functions ranging from mRNA cleavage, translational inhibition, DNA elimination, epigenetic silencing, alternative splicing and even gene activation. First observed in human cells, small RNA-induced gene activation, also known as RNAa, involves the targeted recruitment of Argonaute proteins to specific promoter sequences followed by induction of stable epigenetic changes which promote transcription. The existence of RNAa remains contentious due to its elusive mechanism. A string of recent studies in C. elegans provides unequivocal evidence for RNAa's fundamental role in sculpting the epigenetic landscape and maintaining active transcription of endogenous genes and supports the presence of a functionally sophisticated network of small RNA-Argonaute pathways consisting of opposite yet complementary "yin and yang" regulatory elements. In this review, we summarize key findings from recent studies of endogenous RNAa in C. elegans, with an emphasis on the Argonaute protein CSR-1.
[
Genes Dev,
1999]
Double-strand RNA (dsRNA) is a signal for gene-specific silencing of expression in a number of organisms. This phenomenon was demonstrated recently in Caenorhabditis elegans when dsRNA was injected into the worm and the corresponding gene products disappeared from both the somatic cells of the organism as well as in its F1 progeny. This RNA interference, RNAi, has been generalized to many genes in C. elegans. ds-RNA can also suppress expression of specific genes in plants, a component of the phenomenon called cosuppression. Two recent reports document dsRNA-mediated interference with expression of specific genes in other organisms. Double-strand RNA produced gene-specific phenotypes in Trypanosoma brucei and, very recently, dsRNA-mediated interference was demonstrated in Drosophila. Thus, the RNAi phenomenon is likely to be a general mechanism for gene regulation and may be critical for many developmental and antiviral processes.