[
Cell,
2005]
Regulated apoptosis is part of the development of the nematode Caenorhabditis elegans. In a recent paper in Nature, Yan et al. (2005) describe the in vitro reconstitution of the core components of the worm apoptotic pathway. Based on a structural analysis of the complex between the death activator CED-4 and the antiapoptotic protein CED-9, the authors explain the regulation of activity of CED-4. Intriguingly, CED-4 comprises a AAA+ type ATPase domain yet does not seem to need ATP hydrolysis for activity.
[
Microb Cell Fact,
2015]
BACKGROUND: Avermectin and milbemycin are important 16-membered macrolides that have been widely used as pesticides in agriculture. However, the wide use of these pesticides inevitably causes serious drug resistance, it is therefore imperative to develop new avermectin and milbemycin analogs. The biosynthetic gene clusters of avermectin and milbemycin have been identified and the biosynthetic pathways have been elucidated. Combinatorial biosynthesis by domain swap provides an efficient strategy to generate chemical diversity according to the module polyketide synthase (PKS) assembly line. RESULTS: The substitution of aveDH2-KR2 located in avermectin biosynthetic gene cluster in the industrial avermectin-producing strain Streptomyces avermitilis NA-108 with the DNA regions milDH2-ER2-KR2 located in milbemycin biosynthetic gene cluster in Streptomyces bingchenggensis led to S. avermitilis AVE-T27, which produced ivermectin B1a with high yield of 3450+/-65g/ml. The subsequent replacement of aveLAT-ACP encoding the loading module of avermectin PKS with milLAT-ACP encoding the loading module of milbemycin PKS led to strain S. avermitilis AVE-H39, which produced two new avermectin derivatives 25-ethyl and 25-methyl ivermectin (1 and 2) with yields of 951+/-46 and 2093+/-61g/ml, respectively. Compared to commercial insecticide ivermectin, the mixture of 25-methyl and 25-ethyl ivermectin (2:1=3:7) exhibited 4.6-fold increase in insecticidal activity against Caenorhabditis elegans. Moreover, the insecticidal activity of the mixture of 25-methyl and 25-ethyl ivermectin was 2.5-fold and 5.7-fold higher than that of milbemycin A3/A4 against C. elegans and the second-instar larva of Mythimna separate, respectively. CONCLUSIONS: Two new avermectin derivatives 25-methyl and 25-ethyl ivermectin were generated by the domain swap of avermectin PKS. The enhanced insecticidal activity of 25-methyl and 25-ethyl ivermectin implied the potential use as insecticide in agriculture. Furthermore, the high yield and genetic stability of the engineered strains S. avermitilis AVE-T27 and AVE-H39 suggested the enormous potential in industrial production of the commercial insecticide ivermectin and 25-methyl/25-ethyl ivermectins, respectively.
[
Bioorg Med Chem Lett,
2011]
A novel macrocyclic lactone (1) was isolated from the fermentation broth of Streptomycesmicroflavus neau3, and the structure was elucidated by extensive spectroscopic analysis. Compound 1 showed high acaricidal activity against adult mites (IC(50)=11.1 g mL(-1)), and nematocidal activity against Caenorhabditis elegans (IC(50)=17.4 g mL(-1)), especially the acaricidal activity against mite eggs with an IC(50) of 37.1 g mL(-1), which was relative higher than that of the commercial acaricide and nematocide milbemycins A(3)/A(4).
[
J Biol Chem,
1998]
A novel L-3-hydroxyacyl-CoA dehydrogenase from human brain has been cloned, expressed, purified, and characterized. This enzyme is a homotetramer with a molecular mass of 108 kDa. Its subunit consists of 261 amino acid residues and has structural features characteristic of short chain dehydrogenases. It was found that the amino acid sequence of this human brain enzyme is identical to that of an endoplasmic reticulum amyloid beta-peptide-binding protein (ERAB), which mediates neurotoxicity in Alzheimer's disease (Yan, S. D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collison, K., Zhu, A., Stern, E., Saido, T., Tohyama, M., Ogawa, S., Roher, A., and Stern, D. (1997) Nature 389, 689-695). The purification of human brain short chain L-3-hydroxyacyl-CoA dehydrogenase made it possible to characterize the structural and catalytic properties of ERAB. This NAD+-dependent dehydrogenase catalyzes the reversible oxidation of L-3-hydroxyacyl-CoAs to form 3-ketoacyl-CoAs, but it does not act on the D-isomers. The catalytic rate constant of the purified enzyme was estimated to be 37 s-1 with apparent Km values of 89 and 20 microM for acetoacetyl-CoA and NADH, respectively. The activity ratio of this enzyme for substrates with chain lengths of C4, C8, and C16 was approximately 1:2:2. The human short chain L-3-hydroxyacyl-CoA dehydrogenase gene is organized into six exons and five introns and maps to chromosome Xp11.2. The amino-terminal NAD-binding region of the dehydrogenase is encoded by the first three exons, whereas the other exons code for the carboxyl-terminal substrate-binding region harboring putative catalytic residues. The results of this study lead to the conclusion that ERAB involved in neuronal dysfunction is encoded by the human short chain L-3-hydroxyacyl-CoA dehydrogenase gene.