-
[
Nat Rev Genet,
2023]
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
-
[
Biomolecules,
2020]
Since its discovery in <i>Drosophila</i>, the Notch signaling pathway has been studied in numerous developmental contexts in diverse multicellular organisms. The role of Notch signaling in nervous system development has been extensively investigated by numerous scientists, partially because many of the core Notch signaling components were initially identified through their dramatic 'neurogenic' phenotype of developing fruit fly embryos. Components of the Notch signaling pathway continue to be expressed in mature neurons and glia cells, which is suggestive of a role in the post-developmental nervous system. The Notch pathway has been, so far, implicated in learning and memory, social behavior, addiction, and other complex behaviors using genetic model organisms including <i>Drosophila</i> and mice. Additionally, Notch signaling has been shown to play a modulatory role in several neurodegenerative disease model animals and in mediating neural toxicity of several environmental factors. In this paper, we summarize the knowledge pertaining to the post-developmental roles of Notch signaling in the nervous system with a focus on discoveries made using the fruit fly as a model system as well as relevant studies in <i>C elegans</i>, mouse, rat, and cellular models. Since components of this pathway have been implicated in the pathogenesis of numerous psychiatric and neurodegenerative disorders in human, understanding the role of Notch signaling in the mature brain using model organisms will likely provide novel insights into the mechanisms underlying these diseases.
-
[
Exp Gerontol,
2006]
Caenorhabditis elegans has been used to model aspects of a number of age-associated neurodegenerative diseases, including Alzheimer''s, Parkinson''s and Huntington''s diseases. These models have typically involved the transgenic expression of disease-associated human proteins. Here I describe my laboratory''s specific experience engineering C. elegans models of Alzheimer''s disease, and give a general consideration of the advantages and disadvantages of these C. elegans models. The type of insights that might be gained from using these (relatively) simple models are highlighted. In particular, I consider the potential these models have for uncovering common and unique fundamental toxic mechanisms underlying human neurodegenerative diseases.
-
[
Curr Biol,
2001]
When meiotic cells complete S phase, homologous chromosomes pair, synapse and undergo recombination. A checkpoint protein is somehow required for meiotic chromosome pairing in C. elegans, thus providing a direct link between S phase and the rest of the meiotic program.
-
[
Toxins (Basel),
2016]
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria's ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria's acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
-
[
WormBook,
2007]
Because of their free-living life cycle alternatives, Strongyloides and related nematode parasites may represent the best models for translating C. elegans science to the study of nematode parasitism. S. stercoralis, a significant pathogen of humans, can be maintained in laboratory dogs and gerbils. Biosafety precautions necessary for work with S. stercoralis, though unfamiliar to many C. elegans researchers, are straightforward and easily accomplished. Although specialized methods are necessary for large-scale culture of the free-living stages of S. stercoralis, small-scale cultures for experimental purposes may be undertaken using minor modifications of standard C. elegans methods. Similarly, the morphological similarities between C. elegans and the free-living stages of S. stercoralis allow investigational methods such as laser cell ablation and DNA transformation by gonadal microinjection to be easily adapted from C. elegans to S. stercoralis. Comparative studies employing these methods have yielded new insights into the neuronal control of the infective process in parasites and its similarity to regulation of dauer development in C. elegans. Furthermore, we have developed a practical method for transient transformation of S. stercoralis with vector constructs having various tissue- and cell-specific expression patterns and have assembled these into a modular vector kit for distribution to the community.
-
[
Ann Pharm Fr,
2006]
The Nematode Caenorhabditis elegans (C. elegans) is an established model increasingly used for studying human disease pathogenesis. C. elegans models are based on the mutagenesis of human disease genes conserved in this Nematode or on the transgenesis with disease genes not conserved in C. elegans. Genetic examinations will give new insights on the cellular and molecular mechanisms that are altered in some neurodegenerative diseases like Duchenne''s muscular dystrophy, Huntington''s disease and Alzheimer''s disease. C. elegans may be used for primary screening of new compounds that may be used as drugs in these diseases.
-
[
Mol Cell,
2004]
Applying a combination of innovative approaches to understanding neuronal gene regulation in C. elegans, an article in the latest Developmental Cell (Wenick and Hobert, 2004) gives hope that reading the genome''s transcriptional regulatory code may one day be possible.
-
[
Front Biosci,
2004]
Alzheimer''s disease (AD) is affecting more people every year due to the increase in elderly population. This disease is characterized by senior plaques, containing aggregated amyloid beta peptide (A beta), and neurofibrillary tangles in the AD brains. The A beta depositions are thought to increase in cellular oxidative stress, which subsequently produces neuronal cell death in the patient s brain, causing loss of memory and, in the latter stages, dementia. Diverse models have been established to test this, "Amyloid Toxicity Hypothesis of AD". Among these, the use of the nematode Caenorhabditis elegans has some advantages. This invertebrate has its entire genome known, as well as numerous gene homologues to those seen in humans. In relationship with the cell model, the nematode gives the benefit of an organismal view of the disease. The nematode''s short life span proves useful, when compared with that of mice, allowing mechanistic studies of the disease and pharmacological treatments. Alongside with other laboratories, we have used this in vivo model to correlate the Abeta expression with its toxicity through the observance of the organism''s behavior to provide a better understanding of the cellular processes underlining AD.
-
[
Neurodegener Dis,
2007]
Parkinson''s disease (PD) is one of the most common age-related neurodegenerative diseases that is characterized by selective loss of dopaminergic neurons. Despite recent findings from mammalian model systems, molecular mechanisms of the pathophysiology are poorly understood. Given the high conservation of molecular pathways from invertebrates to mammalians, combined with technical advantages, such as high-throughput approaches, Caenorhabditis elegans represents a powerful system for the identification of factors involved in neurodegeneration. In this review we describe that C. elegans can be used to advance our understanding of the genetic mechanisms implicated in these disorders. Copyright (c) 2007 S. Karger AG, Basel.