-
[
Int J Biol Macromol,
2018]
Calreticulin (CRT), a highly conserved ubiquitous eukaryotic protein with a molecular mass of 46kDa, containing three domains (N, P, and C) is involved in promoting prolonged parasite-host relations. Brugia malayi Calreticulin (BmCRT) is involved in the establishment of parasite infection by suppression of C1q-mediated host immune response. Calcium plays important role in this immunomodulatory mechanism of BmCRT. In the present study binding of calcium with BmCRT region involved in this interaction was investigated and correlated with the accompanying changes in fluorescence, circular dichroism (CD) and UV absorption. The results obtained clearly indicated that BmCRT is a calcium binding protein and contains types two of Ca<sup>2+</sup> binding sites, one high affinity Ca<sup>2+</sup> binding site at P domain and another low affinity Ca<sup>2+</sup> binding site at C domain. Zinc also binds to additional sites that do not have appreciable affinity for the calcium. These studies have provided new knowledge that allows us to describe how the structure of BmCRT responds to interactions with calcium and zinc which is different from human CRT and also discuss how this mechanism help to complex formation with host C1q.
-
[
Int J Biol Macromol,
2017]
Calreticulin of Brugia malayi (BmCRT) play very important role in host-parasite interaction. In previous study it was found that BmCRT is responsible for prevention of host classical complement pathway activation via its interaction with first component C1q of the human host. Therefore, BmCRT is an essential protein for parasite survival and an important drug target to fend filariasis. In the present study, we have carried out a systamatic biophysical characterization of BmCRT protein. Unfolding of BmCRT was found to be non-cooperative two-state process in the presence of both denaturant GdmCl and urea. The results also illustrated that protein lost its 50% activity at 1.5M GdmCl and 3M Urea. Partially unfolded and molten-globule like intermediate state was observed at 0.8 to 1.2M GdmCl while Urea unfolding showed intermediate state at 1.2 to 1.6M. Unfolding pathway monitored with the help of apolar quencher, favor above observations. All of these findings support the presence of detectable intermediate state during unfolding pathway of BmCRT. Furthermore, this study indicates that BmCRT is more stable towards temperature (Tm=65C), pH and trypsin digestion. These differences in properties as compared to host can be fruitfully utilized for synthesis of compounds effective against the parasite.
-
[
PLoS One,
2014]
Filarial parasites modulate effective immune response of their host by releasing a variety of immunomodulatory molecules, which help in the long persistence of the parasite within the host. The present study was aimed to characterize an immunomodulatory protein of Brugia malayi and its interaction with the host immune component at the structural and functional level. Our findings showed that Brugia malayi Calreticulin (BmCRT) is responsible for the prevention of classical complement pathway activation via its interaction with the first component C1q of the human host. This was confirmed by inhibition of C1q dependent lysis of immunoglobulin-sensitized Red Blood Cells (S-RBCs). This is possibly the first report which predicts CRT-C1q interaction on the structural content of proteins to explain how BmCRT inhibits this pathway. The molecular docking of BmCRT-C1q complex indicated that C1qB chain (IgG/M and CRP binding sites on C1q) played a major role in the interaction with conserved and non-conserved regions of N and P domain of BmCRT. Out of 37 amino acids of BmCRT involved in the interaction, nine amino acids (Pro(126), Glu(132), His(147), Arg(151), His(153), Met(154), Lys(156), Ala(196) and Lys(212)) are absent in human CRT. Both ELISA and in silico analysis showed the significant role of Ca(+2) in BmCRT-HuC1q complex formation and deactivation of C1r2-C1s2. Molecular dynamics studies of BmCRT-HuC1q complex showed a deviation from 0.4 nm to 1.0 nm. CD analyses indicated that BmCRT is composed of 49.6% helix, 9.6% sheet and 43.6% random coil. These findings provided valuable information on the architecture and chemistry of BmCRT-C1q interaction and supported the hypothesis that BmCRT binds with huC1q at their targets (IgG/M, CRP) binding sites. This interaction enables the parasite to interfere with the initial stage of host complement activation, which might be helpful in parasites establishment. These results might be utilized for help in blocking the C1q/CRT interaction and preventing parasite infection.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
[
Parasitology,
2013]
Glucose-6-phosphate dehydrogenase (G6PD), a regulatory enzyme of the pentose phosphate pathway from Brugia malayi, was cloned, expressed and biochemically characterized. The Km values for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP) were 0.25 and 0.014 mm respectively. The rBmG6PD exhibited an optimum pH of 8.5 and temperature, 40 C. Adenosine 5' [-thio] triphosphate (ATP--S), adenosine 5' [,-imido] triphosphate (ATP-,-NH), adenosine 5' [-thio] diphosphate (ADP--S), Na+, K+, Li+ and Cu++ ions were found to be strong inhibitors of rBmG6PD. The rBmG6PD, a tetramer with subunit molecular weight of 75 kDa contains 0.02 mol of SH group per mol of monomer. Blocking the SH group with SH-inhibitors, led to activation of rBmG6PD activity by N-ethylmaleimide. CD analysis indicated that rBmG6PD is composed of 37% -helices and 26% -sheets. The unfolding equilibrium of rBmG6PD with GdmCl/urea showed the triphasic unfolding pattern along with the highly stable intermediate obtained by GdmCl.
-
Lou Y, Haque A, Freyzon Y, Farese RV, Terry-Kantor E, Hofbauer HF, Termine D, Welte MA, Barrasa MI, Imberdis T, Noble T, Lindquist S, Clish CB, Jaenisch R, Pincus D, Nuber S, Sandoe J, Kohlwein SD, Kim TE, Ho GPH, Ramalingam N, Walther TC, Baru V, Selkoe D, Srinivasan S, Landgraf D, Soldner F, Dettmer U, Fanning S, Becuwe M, Newby G
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
PLoS One,
2017]
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
-
[
Pathog Dis,
2014]
Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.
-
Haass C, Hegermann J, Giese A, Eimer S, Kamp F, Lutz AK, Nuscher B, Wender N, Brunner B, Winklhofer KF, Exner N, Beyer K, Bartels T
[
EMBO J,
2010]
Aggregation of -synuclein (S) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of S is largely unknown. We demonstrate with in vitro vesicle fusion experiments that S has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, S binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous S. In contrast, siRNA-mediated downregulation of S results in elongated mitochondria in cell culture. S can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, S prevents fusion of differently labelled mitochondrial populations. Thus, S inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of S is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin 1-79 or by DJ-1 C106A.
-
[
MicroPubl Biol,
2021]
For El Mouridi, S; AlHarbi, S; Frkjr-Jensen, C (2021). A histamine-gated channel is an efficient negative selection marker for C. elegans transgenesis. microPublication Biology. 10.17912/micropub.biology.000349.