Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is enriched at the presynaptic nerve terminal, its role in neurotransmitter release is poorly defined. We assessed the function of presynaptic CaMKII in neurotransmitter release and tested the hypothesis that BK channel is a mediator of presynaptic CaMKII function by analyzing miniature and evoked postsynaptic currents at the Caenorhabditis elegans neuromuscular junction. Both loss-of-function (lf) and gain-of-function (gf) of
unc-43, the gene encoding CaMKII, inhibited neurotransmitter release. The inhibitory effect of
unc-43(gf) was reversed by mutation or blockade of the BK channel SLO-1. SLO-1 expressed in Xenopus oocytes could be activated by recombinant rat alpha-CaMKII, and this effect of CaMKII was abolished by mutating a threonine residue (T425) at a consensus CaMKII phosphorylation site in the first RCK (regulator of conductance for K+) domain of the channel. Expression of
slo-1(T425A) in neurons antagonized the inhibitory effect of
unc-43(gf) on neurotransmitter release as
slo-1(lf) did. The inhibitory effect of
unc-43(gf) was not reversed by
unc-103(lf),
dgk-1(lf), or
eat-16(lf), which reportedly suppress behavioral phenotypes of
unc-43(gf). These observations suggest that presynaptic CaMKII is a bidirectional modulator of neurotransmitter release, presumably by phosphorylating different molecular targets, and that its negative modulatory effect on the release is mainly mediated by SLO-1 activation.