[
Methods Cell Biol,
1995]
Caenorhabditis elegans is in all likelihood the first metazoan animal whose entire genome will be determined. In addition, a very detailed description of the animal's morphology, development, and physiology is available (see elsewhere in this book, and Wood, 1988). Thus, the complete phenotype and genotype of an animal will be known. What is not known is how genotype determines phenotype; to study this, one needs to establish connections between genome sequence and phenotypes. Much has been done by classic or forward genetics: mutagenesis experiments have identified loci involved in a specific trait. Many of these loci have already been defined at the molecular level, and the genome sequence will certainly aid in the identification of many more. The opposite approach, reverse genetics, becomes naturally more important when more of the genome sequence is determined: Given the sequence of a gene of which nothing else is know, how can the function of that gene be determined? Reverse genetics is more than targeted inactivation. One can study a gene's function by several approaches...|
[
Methods Cell Biol,
2012]
In Caenorhabdatis elegans as in other animals, fat regulation reflects the outcome of behavioral, physiological, and metabolic processes. The amenability of C. elegans to experimentation has led to utilization of this organism for elucidating the complex homeostatic mechanisms that underlie energy balance in intact organisms. The optical advantages of C. elegans further offer the possibility of studying cell biological mechanisms of fat uptake, transport, storage, and utilization, perhaps in real time. Here, we discuss the rationale as well as advantages and potential pitfalls of methods used thus far to study metabolism and fat regulation, specifically triglyceride metabolism, in C. elegans. We provide detailed methods for visualization of fat depots in fixed animals using histochemical stains and in live animals by vital dyes. Protocols are provided and discussed for chloroform-based extraction of total lipids from C. elegans homogenates used to assess total triglyceride or phospholipid content by methods such as thin-layer chromatography or used to obtain fatty acid profiles by methods such as gas chromatography/mass spectrometry. Additionally, protocols are provided for the determination of rates of intestinal fatty acid uptake and fatty acid breakdown by -oxidation. Finally, we discuss methods for determining rates of de novo fat synthesis and Raman scattering approaches that have recently been employed to investigate C. elegans lipids without reliance on invasive techniques. As the C. elegans fat field is relatively new, we anticipate that the indicated methods will likely be improved upon and expanded as additional researchers enter this field.