-
[
Ageing Res Rev,
2013]
We have conducted a comprehensive literature review regarding the effect of vitamin E on lifespan in model organisms including single-cell organisms, rotifers, Caenorhabditis elegans, Drosophila melanogaster and laboratory rodents. We searched Pubmed and ISI Web of knowledge for studies up to 2011 using the terms "tocopherols", "tocotrienols", "lifespan" and "longevity" in the above mentioned model organisms. Twenty-four studies were included in the final analysis. While some studies suggest an increase in lifespan due to vitamin E, other studies did not observe any vitamin E-mediated changes in lifespan in model organisms. Furthermore there are several studies reporting a decrease in lifespan in response to vitamin E supplementation. Different outcomes between studies may be partly related to species-specific differences, differences in vitamin E concentrations and the vitamin E congeners administered. The findings of our literature review suggest that there is no consistent beneficial effect of vitamin E on lifespan in model organisms which is consistent with reports in human intervention studies.
-
[
Semin Cell Dev Biol,
2017]
The midgut (intestine) of the nematode, C. elegans, is a tube consisting of 20 cells that arises from a single embryonic precursor. Owing to its comparatively simple anatomy and the advantages inherent to the C. elegans system, the gut has been used as a model for organogenesis for more than 25 years. In this review, the salient features of C. elegans gut development are described from the E progenitor through to the 20-cell intestine. The core gene regulatory network that drives specification of the gut, and other genes with roles in organogenesis, lumen morphogenesis and the cell cycle, are also described. Questions for future work are posed.
-
[
"The Testis: From Stell Cell to Sperm Function". E Goldberg (ed). Springer-Verlag, New York.,
2000]
In both mammals and C. elegans, spermatogenesis is the process where a spermatogonial cell undergoes a series of divisions to produce a highly differentiated cell, the spermatozoon. Spermatogonial cellular divisions are incomplete in mammals so that all subsequent stages occur in a syncitium. The situation is similar in C. elegans, where spermatogonial nuclei initially share a common cytoplasm. Spermatogonial divisions in both mammals and C. elegans are regulated by signaling from gonadal accessory
-
[
Wiley Interdiscip Rev Dev Biol,
2013]
The transcriptional regulatory hierarchy that controls development of the Caenorhabditis elegans endoderm begins with the maternally provided SKN-1 transcription factor, which determines the fate of the EMS blastomere of the four-cell embryo. EMS divides to produce the posterior E blastomere (the clonal progenitor of the intestine) and the anterior MS blastomere, a major contributor to mesoderm. This segregation of lineage fates is controlled by an intercellular signal from the neighboring P2 blastomere and centers on the HMG protein POP-1. POP-1 would normally repress the endoderm program in both E and MS but two consequences of the P2-to-EMS signal are that POP-1 is exported from the E-cell nucleus and the remaining POP-1 is converted to an endoderm activator by complexing with SYS-1, a highly diverged -catenin. In the single E cell, a pair of genes encoding small redundant GATA-type transcription factors, END-1 and END-3, are transcribed under the combined control of SKN-1, the POP-1/SYS-1 complex, as well as the redundant pair of MED-1/2 GATA factors, themselves direct zygotic targets of SKN-1 in the EMS cell. With the expression of END-1/END-3, the endoderm is specified. END-1 and END-3 then activate transcription of a further set of GATA-type transcription factors that drive intestine differentiation and function. One of these factors, ELT-2, appears predominant; a second factor, ELT-7, is partially redundant with ELT-2. The mature intestine expresses several thousand genes, apparently all controlled, at least in part, by cis-acting GATA-type motifs.
-
[
Cell,
2003]
Most programmed cell deaths in the nematode C. elegans require
ced-3 caspase activity. In a recent paper, Bloss et al. (2003) reveal a new C. elegans death inhibitor,
icd-1, whose loss can promote apoptosis independently of
ced-3.
-
[
Life (Basel),
2022]
Protein kinase A (PKA), which regulates a diverse set of biological functions downstream of cyclic AMP (cAMP), is a tetramer consisting of two catalytic subunits (PKA-C) and two regulatory subunits (PKA-R). When cAMP binds the PKA-R subunits, the PKA-C subunits are released and interact with downstream effectors. In Caenorhabditis elegans (C. elegans), PKA-C and PKA-R are encoded by
kin-1 and
kin-2, respectively. This review focuses on the contributions of work in C. elegans to our understanding of the many roles of PKA, including contractility and oocyte maturation in the reproductive system, lipid metabolism, physiology, mitochondrial function and lifespan, and a wide variety of behaviors. C. elegans provides a powerful genetic platform for understanding how this kinase can regulate an astounding variety of physiological responses.
-
[
Nature Neuroscience,
2002]
A molecule that may be important for sorting presynaptic components into the developing axon is now revealed by a study using the genetic tools available in C. elegans.
-
[
Cell Microbiol,
2013]
The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole-animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal-related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.
-
[
Mol Reprod Dev,
2015]
Developmental robustness is the ability of an embryo to develop normally despite many sources of variation, from differences in the environment to stochastic cell-to-cell differences in gene expression. The nematode Caenorhabditis elegans exhibits an additional level of robustness: Unlike most other animals, the embryonic pattern of cell divisions is nearly identical from animal to animal. The endoderm (gut) lineage is an ideal model for studying such robustness as the juvenile gut has a simple anatomy, consisting of 20 cells that are derived from a single cell, E, and the gene regulatory network that controls E specification shares features with developmental regulatory networks in many other systems, including genetic redundancy, parallel pathways, and feed-forward loops. Early studies were initially concerned with identifying the genes in the network, whereas recent work has focused on understanding how the endoderm produces a robust developmental output in the face of many sources of variation. Genetic control exists at three levels of endoderm development: Progenitor specification, cell divisions within the developing gut, and maintenance of gut differentiation. Recent findings show that specification genes regulate all three of these aspects of gut development, and that mutant embryos can experience a "partial" specification state in which some, but not all, E descendants adopt a gut fate. Ongoing studies using newer quantitative and genome-wide methods promise further insights into how developmental gene-regulatory networks buffer variation. Mol. Reprod. Dev. 2015. 2015 Wiley Periodicals, Inc.
-
[
J Proteomics,
2010]
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.