[
1985]
Myosins from slime molds to brain cells show a remarkable commonality of general molecular properties. These characteristics include two globular domains or heads that contain ATPase and actin-binding sites and the fibrous, coiled-coil a-helical rod that interacts with other molecules in assembly. Two heavy chains (m.w. 200,000) contribute to both heads, whereas two kinds of light chains bind to each head. In this paper, we consider striated muscles and their myosins. The phylogenetically distant nematode body-wall muscles and rabbit fast skeletal muscles produce myosin heavy chains, with about 47% of the amino acid sequences in the heads and 37% of the amino acids in the rod being identical (Karn et al. 1984). Myosin heavy chains are therefore highly conserved proteins. Contrasting with the phylogenetic conservation of myosin structure and sequence is the diversity of supramolecular arrangements of myosin assemblies in striated muscles, the so-called thick filaments. The lengths of thick filaments range from 1.55 um in vertebrates, 2-4 um in insect flight muscles, 10 um in the nematode to 40 um in certain mollusks. The average diameters of these filaments range from about 15 nm in vertebrates, 20 nm in insects, 25 nm in nematodes to 50-100 nm in some molluscan muscles. The surface arrangements of the myosin heads also vary in these different species. The lattice arrangements between thick filaments and the interdigitating, actin-containing thin filaments differ in terms of symmetry and thick:thin stoichiometry between these muscles. It appears likely that other protein components of these muscles interact with the very similar myosins to produce this structural diversity. The relatively subtle differences between myosin isoforms may also be important in these interactions. We define isoform in the case of myosin, for example, as a protein that is defined as a myosin by biochemical criteria but that can be distinguished on the basis of intrinsic molecular structure from another myosin within the same organism. In this paper, we describe experiments suggesting that two genetically different isoforms of myosin play distinct roles in concert with other proteins during the assembly of thick filaments in
[
Methods Cell Biol,
2008]
The nuclear lamina is found between the inner nuclear membrane and the peripheral chromatin. Lamins are the main components of the nuclear lamina, where they form protein complexes with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. Lamins are required for mechanical stability, chromatin organization, Pol II transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in human lamins cause at least 13 distinct human diseases, collectively termed laminopathies, affecting muscle, adipose, bone, nerve and skin cells, and range from muscular dystrophies to accelerated aging. Caenorhabditis elegans has unique advantages in studying lamins and nuclear lamina genes including low complexity of lamina genes and the unique ability of bacterially expressed C. elegans lamin protein to form stable 10 nm fibers. In addition, transgenic techniques, simple application of RNA interference, sophisticated genetic analyses, and the production of a large collection of mutant lines, all make C. elegans especially attractive for studying the functions of its nuclear lamina genes. In this chapter we will include a short review of our current knowledge of nuclear lamina in C. elegans and will describe electron microscopy techniques used for their analyses.