-
[
Trends Genet,
2001]
Four recent papers mark a major shift in functional genomic analysis for multicellular organisms. RNA-mediated interference was applied to inactivate individual genes systematically on a genomic scale. These studies subjected a third of the genes in the genome of Caenorhabditis elegans to reverse genetic analysis.
-
[
Parasitol Today,
1999]
The nematode Strongyloides ratti has a remarkable life cycle, which has both a parasitic and a free-living phase. The free-living phase includes a choice between two developmental routes. Here, Mark Viney discusses recent advances in understanding the biology of this developmental switch and shows how the life cycle of this nematode can be used to explore the lifestyle transitions common to all parasitic nematodes, as well as to address other basic biological questions.
-
[
Nat Rev Mol Cell Biol,
2015]
DNA N(6)-adenine methylation (N(6)-methyladenine; 6mA) in prokaryotes functions primarily in the host defence system. The prevalence and significance of this modification in eukaryotes had been unclear until recently. Here, we discuss recent publications documenting the presence of 6mA in Chlamydomonas reinhardtii, Drosophila melanogaster and Caenorhabditis elegans; consider possible roles for this DNA modification in regulating transcription, the activity of transposable elements and transgenerational epigenetic inheritance; and propose 6mA as a new epigenetic mark in eukaryotes.
-
[
Parasitol Today,
1992]
The classical view of nematode parasites depicts their surface as the epicuticle, the outermost layer of a thick extracellular cuticle. However, many stages and species of nematode have been found to bear an electron-dense outer envelope distinct from and distal to the epicuticle itself. In this review, Mark Blaxter and colleagues summarize some wide-ranging studies in both free-living and parasitic nematodes, and suggest that, in many cases, it is the surface coat rather than the cuticle that displays dynamic properties thought to be involved in immune evasion by parasites.
-
[
Science,
1994]
In 1967, Sydney Brenner isolated the first behavioral mutants of the nematode Caenorhabditis elegans, and in 1970, John White began the systematic reconstruction of its nervous system. This dual approach of genetics coupled with detailed morphological analysis, now enhanced by the tools of molecular biology and electrophysiology, still dominates the study of the function and development of the C. elegans nervous system. Although Brenner's vision of a comprehensive understanding of this simple animal has taken time to mature, findings of the past few years indicate that the tree is bearing fruit.
-
[
Adv Gerontol,
2008]
Aging of organism is a complex process, however it is succeeded to mark out of new evolution-conservative genetic component of longevity and aging. Among the most perspective problems, connecting with this component, there are search of longevity genes in model animals, investigations of mechanisms of environment influence on aging speed (meal quality, light and temperature regimes, irradiation and hypergravity), revealing of aging biomarkers and genes, determined exceptional centenarians in human, and non-genetics methods of aging correction. The most impressive results observed in gerontogene search. In yeast and nematodes there are mutations, which increase maximum lifespan on 10 times, in Drosophila and mice--about 2 times. Nevertheless, genes regulated the aging speed by indirection, controlling organism resistance to damages by exogenous and endogenous stresses.
-
[
Results Probl Cell Differ,
2000]
Aging can be defined in three ways: (1) as a progressive increase in the probability of dying of nonaccidental causes, (2) as a progressive increase in the probability of being afflicted with a number of specific diseases, such as cancer, cardiovascular diseases, and neurodegenerative diseases, and (3) as a progressive increase in the prevalence of features that are not in themselves pathological, but which are linked to chronological age, like wrinkled skin or white hair. In recent years, several investigators have used definition (1) and the measure of life span in the nematode Caenorhabditis elegans to study genetic, cellular, and molecular mechanisms that might be responsible for the aging process in all organisms.
-
[
F1000Res,
2016]
The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.
-
[
Cell,
1996]
Across the animal kingdom, fertilization requires the encounter between a large stationary egg and small motile sperm. To maximize their likelihood of reaching the egg before their competition, sperm are extraordinarily specialized cells, generally consisting of little more than a haploid nucleus, mitochondria to generate energy, and a highly efficient movement engine. Almost all animal sperm are flagellated and seek the egg by swimming quickly through a liquid environment. Nematodes, however, produce sperm that move by crawling along solid substrates. These roundworm sperm extend pseudopods that look and behave like the actin-rich pseudopods of a wide variety of cells ranging from free-living soil amoebae to human white blood cells. The crawling sperm appear by most criteria to be exploiting classic actin-based cell motility, with one important difference: the sperm contain practically no actin (Nelson et al., 1982).
-
[
Philos Trans R Soc Lond B Biol Sci,
2015]
The article 'Structure of the nervous system of the nematode Caenorhabditis elegans' (aka 'The mind of a worm') by White et al., published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome, together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.