-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Int J Parasitol,
2003]
Parasitic nematodes, living in the intestinal tract or within tissues of theirs hosts, are constantly exposed to an array of immune effector mechanisms. One strategy to cope with the immune response is the release of immunomodulatory components that block effector mechanisms or interact with the cytokine network. Among the secreted nematode immunomodulators, cysteine protease inhibitors (cystatins) are shown to be of major importance. Nematode cystatins inhibit, among others, proteases involved in antigen processing and presentation, which leads to a reduction of T cell responses. At the same time nematode cystatins modulate cytokine responses, the most prominent trait being the upregulation of IL-10, a Th2 cytokine, by macrophages. In this situation, IL-10 leads among others to downregulation of costimulatory surface molecules of macrophages. These properties contribute to induction of an anti-inflammatory environment, concomitant with a strong inhibition of cellular proliferation. This setting is believed to favour the survival of worms. An opposite activity of nematode cystatins is the upregulation of production of inducible nitric oxide by IFN-gamma activated macrophages, an intrinsic property of natural cysteine protease inhibitors. This shows that these proteins can act as proinflammatory molecules under certain circumstances. A comparison of the immunomodulatory effects of cystatins of filarial nematodes with homologous proteins of the free-living nematode Caenorhabditis elegans revealed distinct differences. Caenorhabditis elegans cystatins induce the production of the Th1 cytokine IL-12, in contrast to filarial cystatins that upregulate IL-10. Caenorhabditis elegans cystatins hardly inhibit cellular proliferation. These data suggest that cystatins of parasitic nematodes have multiple, specific capacities for immunomodulation, acting in parallel on different immune effector mechanisms. Elucidation of the mechanisms involved might be useful in the development of immunotherapeutic reagents in the future.
-
[
Curr Opin Immunol,
2005]
Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved
p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.
-
[
Bioessays,
2002]
E4BP4, a mammalian basic leucine zipper (bZIP) transcription factor, was first identified through its ability to bind and repress viral promoter sequences. Subsequently, E4BP4 and homologues in other species have been implicated in a diverse range of processes including commitment to cell survival versus apoptosis, the anti-inflammatory response and, most recently, in the mammalian circadian oscillatory mechanism. In some of these cases at least, E4BP4 appears to act antagonistically with members of the related PAR family of transcription factors with which it shares DNA-binding specificity. This diversity of function is mirrored by the regulatory pathways impinging on E4BP4, which include regulation by ras via the lymphokine IL-3 in murine B-cells, by thyroid hormone during Xenopus tail resorption, by glucocorticoids in murine fibroblasts and by calcium in rat smooth muscle cells. This article will cover the unfolding role/s of and regulation of E4BP4, E4BP4-like proteins and PAR factors in species as diverse as mouse and C. elegans. Copyright 2002 Wiley-Periodicals, Inc.
-
[
J Biomed Sci,
2019]
MAP4K3 (also named GLK) is a serine/threonine kinase, which belongs to the mammalian Ste20-like kinase family. At 22years of age, GLK was initially cloned and identified as an upstream activator of the MAPK JNK under an environmental stress and proinflammatory cytokines. The data derived from GLK-overexpressing or shRNA-knockdown cell lines suggest that GLK may be involved in cell proliferation through mTOR signaling. GLK phosphorylates the transcription factor TFEB and retains TFEB in the cytoplasm, leading to inhibition of cell autophagy. After generating and characterizing GLK-deficient mice, the important in vivo roles of GLK in T-cell activation were revealed. In T cells, GLK directly interacts with and activates PKC through phosphorylating PKC at Ser-538 residue, leading to activation of IKK/NF-B. Thus, GLK-deficient mice display impaired T-cell-mediated immune responses and decreased inflammatory phenotypes in autoimmune disease models. Consistently, the percentage of GLK-overexpressing T cells is increased in the peripheral blood from autoimmune disease patients; the GLK-overexpressing T cell population is correlated with disease severity of patients. The pathogenic mechanism of autoimmune disease by GLK overexpression was unraveled by characterizing T-cell-specific GLK transgenic mice and using biochemical analyses. GLK overexpression selectively promotes IL-17A transcription by inducing the AhR-RORt complex in T cells. In addition, GLK overexpression in cancer tissues is correlated with cancer recurrence of human lung cancer and liver cancer; the predictive power of GLK overexpression for cancer recurrence is higher than that of pathologic stage. GLK directly phosphorylates and activates IQGAP1, resulting in induction of Cdc42-mediated cell migration and cancer metastasis. Furthermore, treatment of GLK inhibitor reduces disease severity of mouse autoimmune disease models and decreases IL-17A production of human autoimmune T cells. Due to the inhibitory function of HPK1/MAP4K1 in T-cell activation and the promoting effects of GLK on tumorigenesis, HPK1 and GLK dual inhibitors could be useful therapeutic drugs for cancer immunotherapy. In addition, GLK deficiency results in extension of lifespan in Caenorhabditis elegans and mice. Taken together, targeting MAP4K3 (GLK) may be useful for treating/preventing autoimmune disease, cancer metastasis/recurrence, and aging.
-
[
Curr Protein Pept Sci,
2003]
ES-62 is a major secreted glycoprotein of the rodent filarial nematode Acanthocheilonema viteae and homologue of molecules found in filarial nematodes which parasitise humans. The molecule consists of a tetramer of apparently identical monomers of ~62 kDa which we have shown by sedimentation equilibrium analytical ultracentrifugation to strongly associate. ES-62 is one of several filarial nematode proteins to contain the unusual post-translational modification of phosphorylcholine (PC) addition. Specifically, we have found that PC is attached to one of three distinct N-type glycans we have characterised on the molecule. The amino acid sequence of ES-62 shows 37-39% identity with a family of 6 other proteins, some of which have been predicted to be amino- or carboxy-peptidases. We have also found that ES-62 is able to interact with a number of cells of the immune system, specifically B- and T-lymphocytes, macrophages and dendritic cells. Lymphocytes exposed to ES-62 in vitro or in vivo are less able to proliferate in response to ligation via the antigen receptor. Peritoneal macrophages pre-exposed to the molecule are less able to produce the cytokines IL-12, IL-6 and TNF-alpha following subsequent incubation with the classical stimulators IFNgamma and LPS. Dendritic cells allowed to mature in the presence of ES-62 acquire a phenotype, which allows them to induce anti-inflammatory "TH2-type" responses. With respect to immunomodulation, the PC moiety of the parasite molecule appears to be predominantly responsible for the effects on lymphocyte proliferation at least and we have also found that its removal converts the murine IgG antibody response to ES-62 from solely IgG1 to mixed IgG1/IgG2a. ES-62 appears to interact with cells of the immune system in a PC-dependent manner and, at least in part, via a molecule of ~82 kDa. Studies of the interaction in lymphocytes show that it is associated with activation of certain signal transduction molecules including a number of protein tyrosine kinases and mitogen activated protein kinases (MAPkinases). Although such activation is insufficient to induce proliferation, it serves to almost completely desensitise the cells to antigen-receptor ligation-induced activation of the phosphoinositide 3-kinase (PI-3-kinase) and Ras/MAPkinase pathways, events critical for lymphocyte proliferation. Such desensitisation reflects ES-62-primed recruitment of a number of negative regulators of these pathways, such as the phosphatases SHP-1 and Pac-1.
-
[
Vision Res,
2012]
The mechanism by which myristoylated proteins are targeted to specific subcellular membrane compartments is poorly understood. Two novel acyl-binding proteins, UNC119A and UNC119B, have been shown recently to function as chaperones/co-factors in the transport of myristoylated G protein -subunits and src-type tyrosine kinases. UNC119 polypeptides feature an immunoglobulin-like -sandwich fold that forms a hydrophobic pocket capable of binding lauroyl (C12) and myristoyl (C14) side chains. UNC119A in rod photoreceptors facilitates the transfer of transducin subunits (T) from inner segment to outer segment membranes by forming an intermediate diffusible UNC119-T complex. Similar complexes are formed in other sensory neurons, as the G proteins ODR-3 and GPA-13 in Caenorhabditis elegans
unc-119 mutants traffic inappropriately. UNC119B knockdown in IMCD3 cells prevents trafficking ofmyristoylated nephrocystin-3 (NPHP3), a protein associated with nephronophthisis, to cilia. Further, UNC119A was shown to transport myristoylated src-type tyrosine kinases to cell membranes and to affect T-cell receptor (TCR) and interleukin-5 receptor (IL-5R) activities. These interactions establish UNC119 polypeptides as novel lipid-binding chaperones with specificity for a diverse subset of myristoylated proteins.
-
[
Front Nutr,
2018]
<i>Caenorhabditis elegans</i> has been used in research for years to clarify the genetic cascades and molecular mechanisms of aging, longevity, and health span. Health span is closely related to frailty; however, frailty has a different concept and is evaluated using various parameters in humans, such as Fried's Frailty Criteria. The <i>C. elegans</i> model has several advantages when performing a chemical screen to identify drug candidates. Several mouse models of frailty were recently developed, including a homozygous <i>IL-10</i> knockout. These mouse models are useful for understanding human frailty; however, they are not appropriate for primary drug screening because they require large spaces, expensive cost, and time consuming assessments. Therefore, a combination of these models may be a promising tool for discovering drugs and understanding the mechanisms of frailty. In addition, natural products, and herbs are attractive sources of novel drugs with pharmacological activity and low toxicity, in fact, over 60% of currently-available drugs are estimated to be related to natural compounds. In this review, the possibility of identifying natural agents (i.e., herb extracts and compounds) that could improve frailty are proposed, and the advantages and limitations of these models are also discussed.
-
[
Med Pr,
1994]
Apoptosis--a programme physiological necrosis of cells is a synonym of a complex multistage process of cell reduction described during the 1970s. It occurs during metamorphosis on insects and amphibians as well as during embryogenesis, intrauterine and extra-fetal life of mammals. It regulates the atrophy of completely developed organs, e.g. thymus, and the hormonal restructuring of adrenal glands, mammary and prostate glands, ovaries and others. It is a reverse of proliferation and it guarantees homeostasis of the number, structure and biochemical activity of tissues and organs. It is developed by apoptosis substances and factors represented by protein hormones, peptides, steroid hormones, cytokines and metabolites of vitamin A, antimetabolites, drugs, toxic substances, ionizing radiation, antigens. On the other hand, the development of apoptosis is arrested by so called "survival factors"--erythropoietin, CSF, NGF, IL-1 and 2, certain hormones, phenobarbital, cyproterone. The process of a programmed necrosis is associated with spectacular "events" of morphological, biochemical and macromolecular nature. Steering is provided by a group of genes, partly recognized, particularly in the Nematode of Caenorhabditis elegans. They are among others killer genes which remove the remnants of decaying cells and genes which hinder the expression of death genes. Transduction of the signal from the receptor to the nuclear chromatin releasing a programmed necrosis of cells is also discussed.