-
[
Cell,
2000]
Current understanding of the way in which embryonic polarity is established relies heavily on studies of maternal effect lethal mutants in D. melanogaster and C. elegans. Although the analysis in worms began in earnest about a decade after the explosion of information from flies, we now know enough about both systems to make comparisons meaningful, and to ask whether there are conserved mechanisms used for establishing embryonic polarity. Thus far, the single common feature is translational repression, which has been shown to localize important fate regulators in both systems. Now, however, in this issue of Cell, Shulman and colleagues report an analysis in D. melanogaster of the first molecule to play an important and perhaps conserved role in both animals, PAR-1.
-
[
New York Times,
1996]
Mutant worms that live five times as long as their normal counterparts are yielding clues to the genetic control of life span-and lending new credence to the old idea that one way to live longer might be to live less.
-
[
Curr Opin Chem Biol,
2001]
Protein -interaction mapping approaches generate functional information for large numbers of genes that are predicted from complete genome sequences. This information, released as databases available on the Internet, is likely to transform the way biologists formulate and then address their questions of interest.
-
[
Subcell Biochem,
2008]
Coronins are highly conserved among species, but their function is far from being understood in detail. Here we will introduce members of the family of coronin like proteins from Drosophila melanogaster, Caenorhabditis elegans and the social amoeba Dictyostelium discoideum. Genetic data from D. discoideum and D. melanogaster revealed that coronins in general are important regulators of many actin-dependent processes.
-
[
Ann Appl Biol,
2005]
Genomic tools are expanding the utility of organisms originally developed as models for biomedical research as a means to address complex agricultural problems. Conversely, agricultural pests are serving as models to help unravel questions of basic biology. Examples from C. elegans and root-knot nematode of this two-way exchange are discussed.
-
[
Biochim Biophys Acta,
2009]
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms. In this review we will summarize what is known about phospholipase D in several model organisms, including C. elegans, D. discoideum, D. rerio and D. melanogaster. In the cases where knockouts are available (C. elegans, Dictyostelium and Drosophila) the PLD gene(s) appear not to be essential for viability, but several studies are beginning to identify pathways where this activity has a role. Given that the proteins in model organisms are very similar to their mammalian counterparts, we expect that future studies in model organisms will complement and extend ongoing work in mammalian settings. At the end of this review we will also provide a short update on phosphatidic acid targets, a topic last reviewed in 2006.
-
[
Curr Biol,
1999]
In the nematode Caenorhabditis elegans gonad shape and size is determined by the migration of a leader cell, which is at the tip of the growing gonad arm. A metalloprotease secreted by the leader cell has recently been found to play an essential role in this process, preparing the way ahead for the cell's migration.
-
[
Developmental Cell,
2004]
The X chromosome is largely inactivated in spermatogenesis of heterogametic males, and in multiple phyla it encodes few genes specifically expressed in the male germline. Writing in Nature Genetics, Bean et al. report a parallel between male germline X inactivation in nematodes and a fungal gene-silencing mechanism that alters the way we view the evolution of both phenomena.
-
[
Seminars in Developmental Biology,
1992]
At the 4-cell stage of the C. elegans embryo, three axes can be defined: anterior-posterior (A-P), dorsal-ventral (D-V), and left-right (L-R). The A-P axis first becomes obvious in the newly fertilized 1-cell embryo. Pronouned cytoplasmic assymmetries arise along the A-P axis during the first cell cycle, after which the zygote undergoes a series of stem cell-like cleavages with an A-P orientation of the mitotic spindle; these cleavages generate several somatic founder cells and a primordial germ cell. The D-V and L-R axes are defined by the direction of spindle rotation as the 2-cell embryo divides into four cells. In contrast to the A-P axis, there do not appear to be cellular asymmetries associated with the D-V and L-R axes, and both axes can easily be reversed by micromanipulation. Thus, with respect to the roles that the embryonic axes serve in cell-fate determination in the early C. elegans embryo, it appears that internally transmitted developmental information is differentially segregated along the A-P axis, but not along the D-V or L-R axes. Instead, D-V and L-R differences in the fates of cells within lineages appear to be dictated by differential
-
[
Front Physiol,
2013]
Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms.