[
Esquire,
1985]
In the end, it is attention to detail that makes all the difference. It's the center fielder's extra two steps to the left, the salesman's memory for names, the lover's phone call, the soldier's clean weapon. It is the thing that separates the men from the boys, and, very often, the living from the dead. Professional success depends on it, regardless of the field. But in big-time genetic research, attention to detail is more than just a good work habit, more than a necessary part of the routine. In big-time genetic research, attention to detail is the very meat and the god of science. It isn't something that's expected; it is simply the way of things. Those in the field, particularly those who lead the field, are slaves to detail. They labor in submerged mines of it, and haul great loads of it up from the bottom of an unseen ocean-the invisible sea of biological phenomena, upon which all living things float. Detail's rule over genetics is total and cruel. Months and even years of work have literally gone down the drain because of the most minor miscalculations. Indeed, perhaps the greatest discovery in the history of the discipline-the double-helix structure of DNA-might have been made by Linus Pauling instead of James D. Watson and Francis H. C. Crick. But Pauling's equations contained a simple mistake in undergraduate-level chemistry, a sin against detail that is now part of the legend. Each of the six scientists singled out here has made his mark by mastering his own particular set of
[
Science,
1996]
What 's the secret to long life? For the nematode Caenorhabditis elegans, it's slow, easy living, in which all life's events occur in a leisurely rhythm, according to work described on page 1010 of this issue. The new research, by Siegfried Hekimi and Bernard Lakowski of McGill University in Montreal, identifies four genes that, when mutated, can make these worms use energy more efficiently, feed and swim at a slower pace-and live many times their normal life-span. Some of the experimental nematodes lived for almost 2 months, far longer than their expected 9 days.
[
Science,
1996]
The one-cell animal embryo, or zygote, faces a daunting engineering task: implementing the architectural plans inscribed in its DNS for building a complex, multicelled body. So, like any sensible construction supervisor, the zygote swiftly divides the project into manageable chunks, assigning some of its progeny to build only gut, for example, and other to make only muscle or skin. Just how each early embryonic cell gets its orders is understood only for the fruit fly Drosophila melanogaster-an achievement that helped win 1995's Nobel Prize in medicine for three developmental biologists. Now, however, the communication lines governing embryonic development are emerging in another animal beloved of developmental researchers: the tiny worm known as Caenorhabditis elegans.