[
Parasitology,
2000]
This detailed review of the published studies underlying ivermectin's recent registration for use in lymphatic filariasis (LF) demonstrates the drug's single-dose efficacy (over the range of 20-400 microg/kg) in clearing microfilaraemia associated with both Wuchereria bancrofti and Brugia malayi infections of humans. While doses as low as 20 microg/kg could effect transient microfilarial (mf) clearance, higher dosages induced greater and more sustained mf reduction. The single dose of 400 microg/kg yielded maximal responses, but a number of practical considerations suggest that either 400 microg/kg or 200 microg/kg doses would be acceptable for use in LF control programmes. Associated safety assessments indicate that adverse events, which occur commonly following treatment of microfilaraemic individuals, develop not because of drug toxicity but because of host inflammatory responses to dying microfilariae killed by the ivermectin treatment. Ivermectin is, therefore, a highly effective and generally well tolerated microfilaricide that may soon become an essential component of many public health initiatives to interrupt transmission of lymphatic filarial infection in an effort to eliminate LF globally.
[
Acta Leiden,
1990]
Community trials were started to address questions concerning the safety of ivermectin during large scale treatment, its potential for transmission control, its effect in preventing ocular onchocercal disease, its acceptability and the organization of large scale treatment. A summary is presented of the major, latest results on the short-term epidemiological impact of large scale ivermectin treatment, as observed in eight community trials undertaken in the Onchocerciasis Control Programme in West Africa (OCP). Ivermectin treatment resulted in a 96%-99% reduction in the mean load of microfilariae (mf) in the skin in treated patients. The subsequent mf-repopulation of the skin was faster than in the clinical trials and after 12 months the mean loads had returned to more than 40% of the pre-treatment load. Ocular mf loads were also greatly reduced and a post-treatment regression of early lesions of the anterior segment of the eye was observed. The transmission of Onchocerca volvulus was reduced by some 60% during the first year after treatment in one trial but no additional reduction was observed after the second treatment round. These results, and other recent research findings, have been used to quantify an epidemiological model for the transmission and control of onchocerciasis. Preliminary results of computer simulations of the predicted long-term epidemiological impact of large scale ivermectin treatment indicate that ivermectin treatment may play a very important role in disease control but that it is unlikely to become a practical tool for transmission control in endemic foci. Ivermectin treatment appears to be the most appropriate method for control of recrudescence of infection in an area where the parasite reservoir has been virtually eliminated by vector control, such as in the core area of the OCP.
[
1983]
In 1974, Sydney Brenner published an elegant paper that described the genetic system of Caenorhabditis elegans and led to its use in research on a wide variety of topics, including aging (Brenner, 1974). Its small size (1mm as an adult) and determinate cell lineage has allowed a description of the entire somatic cell lineage from the one-cell stage to the adult (Sulston and Horvitz, 1977; Deppe et al., 1978; Kimble and Hirsh, 1979; Suslton et al., personal communication). Its ease of culture makes it an organism of choice for studies of various aspects of anatomy and physiology, including muscle formation and function (Zengel and Epstein, 1980; Mackenzie and Epstein, 1980), cuticle formation (Cox et al, 1981), neuroanatomy (Ward et al, 1975; Ware et al, 1975; Sulston et al, 1975), and behavior (Dusenbery, 1980). Several genes have been cloned by recombinant DNA techniques ablation (Kimble, 1981; Laufer and von Ehrenstin, 1981) procedures, as well as most of the modern molecular techniques, are in use.
[
Methods Cell Biol,
1995]
Although Caenorhabditis elegans was originally chosen as a model organism for cell biology with serial section electron microscopy (EM) methods in mind, these methods have remained a daunting challenge. There is an apocryphal story that Nichol Thomson originally advised Sydney Brenner that C. elegans was unsuitable for electron microscopy and that Brenner should choose another species. Other experienced microscopists have probably shared similar dark thoughts from time to time. Nonetheless, the worm's very small size, simple organization, and cablelike nervous system have permitted Brenner's colleagues to characterize every cell and cell contact in the wild-type animal, potentiating the genetic characterization of cellular development in remarkable detail. We attempt to provide an adequate background for anyone to initiate EM studies of C. elegans. Two decades ago, as the first of Brenner's postdoctoral fellows left his laboratory to establish new worm laboratories, it was standard practice to include an EM component in their studies. Their combined efforts to characterize the adult animal's cell types and the essential steps in its development helped to erect a lovely scaffold of key manuscripts, capped by the description of the "Mind of the Worm" in some 600 micrographs and 175 drawings. Many of these works required technical heroics or suffered long delays before publication. Most people later chose to leave electron microscopy behind in pursuit of molecular quarry. The fruits of their molecular and genetic studies should soon stimulate a renewed flowering of electron microscopy. We hope to smooth your entry or reentry into these techniques. We also summarize our methods for three-dimensional (3D) image reconstruction, based largely on film techniques introduced by John White and Randle Ware. Digital imaging techniques seem poised to make 3D reconstruction more accessible, and may simplify the exchange of morphological data between laboratories. We discuss several computer systems that the C. elegans community could adopt for high-resolution studies of structure and function. In addition, we briefly cover several specialized specimen preparation techniques for electron microscopy, including freeze fracture and electron microscopic immunocytochemistry.