[
Cell,
1996]
Anyone who has watched an early embryo develop cannot help but be awed by the choreography of the early cleavages. The orientation and timing of cleavage in an animal cell are always such that the cleavage furrow bisects the mitotic apparatus (MA) during telophase, thus ensuring the equal partitioning of daughter chromosomes. In addition, the regulation of cleavage plane orientation is necessary for correct partitioning of localized determinants to specific daughter cells, for optimal positioning of cells in developing embryos, and for morphogenesis in plants, which are not motile.
[
Chromosoma,
2016]
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MAT2.
[
Science,
1998]
The Caenorhabditis elegans genome sequence was surveyed for transcription factor and signaling gene families that have been shown to regulate development in a variety of species. About 10 to 25 percent of the genes in most of the gene families already have been genetically analyzed in C. elegans, about half of the genes detect probable orthologs in other species, and about 10 to 25 percent of the genes are, at present, unique to C. elegans. Caenorhabditis elegans is also missing genes that are found in vertebrates and other invertebrates. Thus the genome sequence reveals universals in developmental control that are the legacy of metazoan complexity before the Cambrian explosion, as well as genes that have been more recently invented or lost in particular phylogenetic lineages.AD - Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA. ruvkun@frodo.mgh.harvard.eduFAU - Ruvkun, GAU - Ruvkun GFAU - Hobert, OAU - Hobert OLA - engPT - Journal ArticlePT - ReviewPT - Review, TutorialCY - UNITED STATESTA - ScienceJID - 0404511RN - 0 (Helminth Proteins)RN - 0 (Transcription Factors)SB - IM
[
Adv Exp Med Biol,
1988]
Parasite-specific putrescine-N-acetyltransferase and polyamine oxidase, both involved in the reversed pathway of polyamine metabolism, were demonstrated for Ascaris suum and Onchocerca volvulus. Berenil-treatment was found to be correlated with accumulation of polyamines, especially spermine, obviously due to blockaded polyamine interconversion. Furthermore it was shown that added spermine to the culture medium led to the death of worms. These specificities might be exploited for chemotherapy of filarial infections. Polyamines are widely distributed in the nature. They are found in higher and lower eucaryotes and in procaryotes as well as in viruses (Tabor and Tabor, 1984). During the last years there have been many approaches to examine the role of polyamines in cell growth and differentiation in vertebrates (Tabor and Tabor, 1984; Pegg, 1986). The polyamine metabolism of parasites also has attracted increasing interest, e.g. in African trypanosomes the initial enzyme of polyamine synthesis - ornithine decarboxylase - has been exploited as a target for chemotherapy by using DFMO (DL alpha-difluoromethylornithine) (Bacchi et al., 1980; Bacchi et al., 1983; Fairlamb et al., 1985; Giffin et al., 1986). The polyamine metabolism of filaria and other helminths is still a neglected area of research, although there are reports about distribution pattern of polyamines and some peculiarities of polyamine metabolism in filarial worms (Srivastava et al., 1980; Wittich et al., 1987; Walter, 1988). DFMO and MGBG (methylglyoxal bis-(guanylhydrazone], both of which are potent inhibitors of polyamine synthesis in mammals, do not significantly effect the viability of filarial worms (Wittich et al., 1987).(ABSTRACT TRUNCATED AT 250 WORDS)