-
[
Mol Cell,
2014]
RNA-specific polynucleotide kinases of the Clp1 subfamily are key components of various RNA maturation pathways. However, the structural basis explaining their substrate specificity and the enzymatic mechanism is elusive. Here, we report crystal structures of Clp1 from Caenorhabditis elegans (ceClp1) in a number of nucleotide- and RNA-bound states along the reaction pathway. The combined structural and biochemical analysis of ceClp1 elucidates the RNA specificity and lets us derive a general model for enzyme catalysis of RNA-specific polynucleotide kinases. We identified an RNA binding motif referred to as "clasp" as well as a conformational switch that involves the essential Walker A lysine (Lys127) and regulates the enzymatic activity of ceClp1. Structural comparison with other P loop proteins, such as kinases, adenosine triphosphatases (ATPases), and guanosine triphosphatases (GTPases), suggests that the observed conformational switch of the Walker A lysine is a broadly relevant mechanistic feature.
-
Martinez-Perez E, Belan O, Enchev RI, Barroso C, Boulton SJ, O'Reilly N, Anand R, Maeots E, Newton MD, Federico S, Kaczmarczyk A, Rueda DS
[
Mol Cell,
2021]
Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The
rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR invivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.
-
[
J Struct Biol,
2006]
The AAA family proteins usually form a hexameric ring structure. The ATP-binding pocket, which is located at the interface of subunits in the hexamer, consists of three functionally important motifs, the Walker A and B motifs, and the second region of homology (SRH). It is well known that Walker A and B motifs mediate ATP binding and hydrolysis, respectively. Highly conserved arginine residues in the SRH have been proposed to function as arginine fingers, which interact with the gamma-phosphate of bound ATP. To elucidate the mechanism of ATP hydrolysis, we prepared several mutants of the Caenorhabditis elegans fidgetin homologue FIGL-1 carrying a mutation in each of the above-mentioned three motifs. None of the constructed mutants showed ATPase activity. All the mutants except for K362A were able to bind ATP. A decrease in the ATPase activity by mixing wild-type and each mutant subunits was caused by the formation of hetero-hexamers. Mixtures of E416A and R471A, or N461A and R471A led to the formation of hetero-hexamers with partially restored ATPase activities, providing direct, firm evidence for the intersubunit catalysis model. In addition, based on the results obtained with mixtures of K362A with wild-type or R471A subunits, we propose that a conformational change upon ATP binding is required for proper orientation of the arginine fingers, which is essential for efficient hydrolysis of ATP bound to the neighboring subunit.
-
[
FEBS Lett,
2004]
Based on the amino acid alignment, Caenorhabditis elegans F32D1.1 was identified to be a homologue of the mammalian fidgetin. We produced and purified the F32D1.1 protein by using a baculovirus-expression system. F32D1.1 has an ATPase activity, which is sensitive to N-ethylmaleimide. Km and Vmax for the ATPase activity of F32D1.1 were estimated to be 0.44 mM and 225 nmol/mg/min, respectively. When the cysteine at the position of 368 was mutated to alanine, the ATPase activity was greatly decreased; Vmax was decreased to one-sixth, while Km remained similar. These results suggest that the unique position of cysteine 368, located immediately downstream of the Walker A motif, plays an important role in the ATP hydrolysis process of C. elegans F32D1.1 protein.
-
Au V, Rademakers S, Moerman DG, Edgley M, Timbers TA, Rosell FI, Muncaster Q, Jansen G, Leroux MR, Garland SJ, Mohan S, Li-Leger E, Cai J, Flibotte S
[
PLoS Genet,
2016]
Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.
-
[
Mol Cell,
2003]
The RING domain of Mdm2 contains a conserved Walker A or P loop motif that is a characteristic of nucleotide binding proteins. We found that Mdm2 binds adenine-containing nucleotides preferentially and that nucleotide binding leads to a conformational change in the Mdm2 C terminus. Although nucleotide binding is not required for Mdm2 E3 ubiquitin ligase activity, we show that nucleotide binding-defective P loop mutants are impaired in
p14(ARF)-independent nucleolar localization both in vivo and in vitro. Consistent with this, ATP-bound Mdm2 is preferentially localized to the nucleolus. Indeed, we identify a unique amino acid substitution in the P loop motif (K454A) that uncouples nucleolar localization and E3 ubiquitin ligase activity of Mdm2 and leads to upregulation of the E3 activity both in human cells and in Caenorhabditis elegans. We propose that nucleotide binding-facilitated nucleolar localization of Mdm2 is an evolutionarily conserved regulator of Mdm2 activity.
-
[
J Physical Soc Japan,
2001]
For the physical study of the native responses of Caenorhabditis elegans (C. elegans), probability distribution of random walkers on the neuron graph is studied. Here, the neuron graph is a graph which represents the synaptic connection of neurons of the worm. Connection of a sensory neuron to various motor neurons are represented by an index named accessibility. Accessibilities from 39 sensory neurons to all of motor neurons are computed and tile formers are classified into three groups. It is found that this classification coincides with the grouping by native responses caused by those sensory neurons. This coincidence implies the usefulness of the random walker model for the analysis of the neural network. The connectivity represented by the major paths of random walkers is a significant factor to interpret relation between external disturbance and resultant movement in the native response of the worm. This native response of the worm is encoded by the connectivity of vertices in the neuron graph.
-
Collinson LM, Taylor MR, Carzaniga R, Krejci L, Rueda D, Egelman EH, Boulton SJ, Chaurasiya KR, Yu X, Ward JD, Spirek M
[
Cell,
2015]
Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.
-
[
Nature,
1999]
The AAA domain, a conserved Walker-type ATPase module, is a feature of members of the AAA family of proteins, which are involved in many cellular processes, including vesicular transport, organelle biogenesis, microtubule rearrangement and protein degradation. The function of the AAA domain, however, has not been explained. Membrane-anchored AAA proteases of prokaryotic and eukaryotic cells comprise a subfamily of AAA proteins that have metal-dependent peptidase activity and mediate the degradation of non-assembled membrane proteins. Inactivation of an orthologue of this protease family in humans causes neurodegeneration in hereditary spastic paraplegia. Here we investigate the AAA domain of the yeast protein Yme1, a subunit of the iota-AAA protease located in the inner membrane of mitochondria. We show that Yme1 senses the folding state of solvent-exposed domains and specifically degrades unfolded membrane proteins. Substrate recognition and binding are mediated by the amino-terminal region of the AAA domain. The purified AAA domain of Yme1 binds unfolded polypeptides and suppresses their aggregation. Our results indicate that the AAA domain of Ymel has a chaperone-like activity and suggest that the AAA domains of other AAA proteins may have a similar function.
-
[
J Cell Biol,
2006]
Necrotic cell death is defined by distinctive morphological characteristics that are displayed by dying cells (Walker, N.I., B.V. Harmon, G.C. Gobe, and J.F. Kerr. 1988. Methods Achiev. Exp. Pathol. 13:18-54). The cellular events that transpire during necrosis to generate these necrotic traits are poorly understood. Recent studies in the nematode Caenorhabditis elegans show that cytoplasmic acidification develops during necrosis and is required for cell death (Syntichaki, P., C. Samara, and N. Tavernarakis. 2005. Curr. Biol. 15:1249-1254). However, the origin of cytoplasmic acidification remains elusive. We show that the alkalization of endosomal and lysosomal compartments ameliorates necrotic cell death triggered by diverse stimuli. In addition, mutations in genes that result in altered lysosomal biogenesis and function markedly affect neuronal necrosis. We used a genetically encoded fluorescent marker to follow lysosome fate during neurodegeneration in vivo. Strikingly, we found that lysosomes fuse and localize exclusively around a swollen nucleus. In the advanced stages of cell death, the nucleus condenses and migrates toward the periphery of the cell, whereas green fluorescent protein-labeled lysosomal membranes fade, indicating lysosomal rupture. Our findings demonstrate a prominent role for lysosomes in cellular destruction during necrotic cell death, which is likely conserved in metazoans.