[
Parasitology,
2000]
The compatibility between sympatric and allopatric combinations of Onchocerca volvulus-anthropophilic species of Simulium was studied in the north-eastern focus of human onchocerciasis as well as in a densely populated locality of the Amazonas State in Venezuela. The objectives were to test the conjecture that local adaptation exists between the parasite and its vectors (the Onchocerca-Simulium complex hypothesis), and assess the possibility of the infection spreading from its present distributional range. For the homologous combination, O. volvulus-S. metallicum cytospecies E in Anzoategui State (north-eastern focus), parasite yield was 45% in contrast to 1% for the heterologous, southern parasite-S. metallicum infection. This was significantly lower than the parasite yield (4-10%) expected after allowing for the effect of density-dependent limitation of infective larval output described in this paper for S. metallicum. The population of S. exiguum s.l. from southern Venezuela allowed no larval development beyond the L1 stage of either northern or southern parasites. Mechanisms for such refractoriness probably operate at the level of the thoracic muscles, not affecting microfilarial uptake or migration out of the bloodmeal. The parasite yield of southern O. volvulus in S. oyapockense s.l. flies biting man at Puerto Ayacucho (Amazonas) was about 1%, in agreement with the figures recorded for highly compatible sympatric combinations such as O. volvulus-S. ochraceum s.l. in Guatemala. No infective larval development of the northern parasite was observed in southern S. oyapockense. These results, together with considerations of typical worm burdens in the human host, presence/absence of armed cibaria in the simuliids, parasite-induced vector mortality, and fly biting rates, suggest a lower potential for onchocerciasis to spread between the northern and southern endemic areas of Venezuela than that between Amazonian hyperendemic locations and settlements outside this focus with high densities of S. oyapockense s.l.
[
Parasitology,
1994]
The transmission success of Onchocerca volvulus is thought to be influenced by a variety of regulatory or density-dependent processes that act at various points in the two-host life-cycle. This paper examines one component of the life-cycle, namely, the ingestion of microfilariae by the simuliid vector, to assess the relationship between intake of larvae and the density of parasites in the skin of the human host. Analysis is based on data from three areas in which onchocerciasis is endemic and includes published information as well as new data collected in field studies. The three areas are: Guatemala (Simulium ochraceum s.l.), West and Central Africa (savanna members of the S. damnosum complex), and South Venezuela (S. guianense). The data record experimental studies of parasite uptake by flies captured in the field and fed to repletion on locally infected subjects who harboured varying intensities of dermal microfilarial infection. Regression analyses of log transformed counts of parasite burdens ingested by the flies plotted against log transformed counts of microfilariae per mg of skin revealed little evidence for saturation in parasite uptake by the flies as the intensity in the human host increased. There was a positive and highly significant rank correlation between both variables for the three blackfly species. In an alternative analysis a model was fitted to data on prevalence of flies with ingested microfilariae (mff) versus dermal mean intensities. The model assumed an overdispersed distribution of the number of mff/fly and a given functional relationship between intake and skin load. The results of both approaches were consistent. It is concluded that parasite ingestion by the vector host is not strongly density dependent in the three geographical areas and ranges of dermal loads examined. It therefore appears that this transmission process is of reduced importance as a regulatory mechanism in the dynamics of parasite population growth.