Doucette-Stamm L, Lamesch PE, Reboul J, Temple GF, Hartley JL, Brasch MA, Hill DE, Vaglio P, Thierry-Mieg N, Shin-i T, Lee H, Moore T, Vandenhaute J, Kohara Y, Vidal M, Jackson C, Thierry-Mieg J, Tzellas N, Thierry-Mieg D, Hitti J
[
Nat Genet,
2001]
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.AD - Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.FAU - Reboul, JAU - Reboul JFAU - Vaglio, PAU - Vaglio PFAU - Tzellas, NAU - Tzellas NFAU - Thierry-Mieg, NAU - Thierry-Mieg NFAU - Moore, TAU - Moore TFAU - Jackson, CAU - Jackson CFAU - Shin-i, TAU - Shin-i TFAU - Kohara, YAU - Kohara YFAU - Thierry-Mieg, DAU - Thierry-Mieg DFAU - Thierry-Mieg, JAU - Thierry-Mieg JFAU - Lee, HAU - Lee HFAU - Hitti, JAU - Hitti JFAU - Doucette-Stamm, LAU - Doucette-Stamm LFAU - Hartley, J LAU - Hartley JLFAU - Temple, G FAU - Temple GFFAU - Brasch, M AAU - Brasch MAFAU - Vandenhaute, JAU - Vandenhaute JFAU - Lamesch, P EAU - Lamesch PEFAU - Hill, D EAU - Hill DEFAU - Vidal, MAU - Vidal MLA - engID - R21 CA81658 A 01/CA/NCIID - RO1 HG01715-01/HG/NHGRIPT - Journal ArticleCY - United StatesTA - Nat GenetJID - 9216904SB - IM
Vidalain PO, Ahn JS, Armstrong CM, Tewari M, Vandenhaut, King KV, Ibarrola N, Edgley ML, Chaklos ST, Butler MD, Vaglio P, Albert PS, Hu PJ, Boxem M, Rual JF, Bertin N, Ayivi-Guedehoussou N, Li S, Milstein S, Busiguina S
[
Mol Cell,
2004]
To initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins. Coaffinity purification (co-AP) assays in mammalian cells confirmed the overall quality of this network. Systematic perturbations of the network using RNAi, both in wild-type and
daf-7/TGF-beta pathway mutant animals, identified nine DAF-7/TGF-beta signaling modifiers, seven of which are conserved in humans. We show that one of these has functional homology to human SNO/SKI oncoproteins and that mutations at the corresponding genetic locus
daf-5 confer defects in DAF-7/TGF-beta signaling. Our results reveal substantial molecular complexity in DAF-7/TGF-beta signal transduction. Integrating interactome maps with systematic genetic perturbations may be useful for developing a systems