-
[
Worm Breeder's Gazette,
1994]
Mutagenesis of C. elegans using N-ethyl-N-nitrosourea Elizabeth De Stasio, Dinesh Stanislaus and Catherine Lephoto. Department of Biology, Lawrence University, Appleton, Wl 54911
-
[
International C. elegans Meeting,
1995]
-
[
International Worm Meeting,
2009]
Interactions between proteins are a key component of most or all biological processes. A key challenge in biology is to generate comprehensive and accurate maps (interactomes) of all possible protein interactions in an organism. This will require iterative rounds of interaction mapping using complementary technologies, as well as technological improvements to the approaches used. For example, we recently developed a novel yeast two-hybrid approach that adds a new level of detail to interaction maps by defining interaction domains(1). Currently, I am working to generate an interaction map of proteins involved in controlling cell polarity in C. elegans to improve our understanding of the molecular mechanisms that establish and maintain cell polarity in multicellular organisms. I will combine two fundamentally different interaction mapping techniques: the yeast two-hybrid system (Y2H) and affinity purification/mass spectrometry (AP/MS). This will provide more detail by identifying both direct interactions between pairs of proteins by Y2H, and the composition of protein complexes by AP/MS. Moreover, interactions missed by one technology may be detected by the other, leading to a more complete interaction map. I will integrate the physical interactions with phenotypic characterizations. To this end I will systematically characterize the interaction network in vivo using two distinct models of polarity: asymmetric division of the one-cell embryo, and stem-cell-like divisions of a multicellular epithelium (in collaboration with M. Wildwater and S. van den Heuvel). M. Boxem, Z. Maliga, N. Klitgord, N. Li, I. Lemmens, M. Mana, L. de Lichtervelde, J. D. Mul, D. van de Peut, M. Devos, N. Simonis, M. A. Yildirim, M. Cokol, H. L. Kao, A. S. de Smet, H. Wang, A. L. Schlaitz, T. Hao, S. Milstein, C. Fan, M. Tipsword, K. Drew, M. Galli, K. Rhrissorrakrai, D. Drechsel, D. Koller, F. P. Roth, L. M. Iakoucheva, A. K. Dunker, R. Bonneau, K. C. Gunsalus, D. E. Hill, F. Piano, J. Tavernier, S. van den Heuvel, A. A. Hyman, and M. Vidal, A protein domain-based interactome network for C. elegans early embryogenesis. Cell, 2008. 134(3): p. 534-545. .
-
[
Worm Breeder's Gazette,
1994]
mab-3 YAC rescue David Zarkower, Mario de Bono, and Jonathan Hodgkin MRC Laboratory of Molecular Biology, Cambridge, England
-
[
Int Microbiol,
2019]
Considering the emergence of multidrug resistance (MDR) in prevalent human pathogen, Mycobacterium tuberculosis (MTB), there is parallel spurt in development of novel strategies aimed to disrupt MDR. The cell envelope of MTB comprises a wealth of lipid moieties contributing towards long-term survival of pathogen that could be exploited as efficient antitubercular target owing to advancements made in mass spectrometry-based lipidomics technology. This study aimed to utilize the lipidomics approach to unveil several lipid associated changes in response to natural antimycobacterial compound vanillin (Van) in Mycobacterium smegmatis, a surrogate for MTB. Lipidomic analyses revealed that that Van alters the composition of fatty acid (FA), glycerolipid (GL), glycerophospholipid (GP), and saccharolipids (SL). Furthermore, Van leads to potentiation of ampicillin and displayed additive effect. The differential expressions of various lipid biosynthetic pathway genes by RT-PCR corroborated with the lipidomics data. Lastly, we demonstrated enhanced survival of Mycobacterium-infected Caenorhabditis elegans model in presence of Van. Thus, lipidomics approach provided detailed insight into mechanisms of membrane disruption by Van in Mycobacterium smegmatis. Our work offers the basis of further understanding the regulation of lipid homeostasis in MTB so that better therapeutic targets could be identified to combat MDR.
-
[
Food Chem X,
2022]
Aimed at exploring the impact of fatty acid side chains on the anthocyanins, n-valeric acid, n-decanoic acid and myristic acid were used to grafting onto the blueberry anthocyanins, and the acylating degree value of the of n-valeric acid acylated anthocyanins (Va-An), n-decanoic acid acylated anthocyanins (De-An) and myristic acid acylated anthocyanins (My-An) reached 6.43 %, 7.56% and 8.38 %, respectively. After acylation modification, the octanol-water partition coefficient of the anthocyanins increased from -0.20 (native anthocyanins, Na-An) to 0.65 (Va-An), 0.66 (De-An) and 0.72 (My-An), respectively, indicating the increasement of the lipid solubility. Besides, although the DPPH clearance of acylated anthocyanins was lower than that of native anthocyanins, the inhibition ratio of β-carotene bleaching and malonaldehyde reduction effect of the acylated blueberry anthocyanins in Caenorhabditis elegans were both stronger than that of native anthocyanins, which might be caused by the improvement of lipid solubility of the anthocyanins.
-
[
Aging Cell,
2002]
The papers by Van Voorhies in Free Radical Biology & Medicine (33, 587-596, 2002) and in this journal claim that the major longevity-extending mutations in C. elegans essentially act by reducing metabolic rate as predicted by the rate-of-living theory, and do not alter any metabolically independent mechanism specific to aging. In contrast, we found no evidence of a reduction in metabolic rate in these mutants using different experimental approaches. Now, Van Voorhies challenges the accuracy of our experimental results.
-
[
Mol Cell,
2009]
Three recent papers (Gu et al., 2009; Claycomb et al., 2009; van Wolfswinkel et al., 2009) provide evidence that links a new class of small RNAs and Argonaute-associated complexes to centromere function and genome surveillance.
-
[
Vet Parasitol,
2008]
Strongyloides sp. (Nematoda) are very wide spread small intestinal parasites of vertebrates that can form a facultative free-living generation. Most authors considered all Strongyloides of farm ruminants to belong to the same species, namely Strongyloides papillosus (Wedl, 1856). Here we show that, at least in southern Germany, the predominant Strongyloides found in cattle and the Strongyloides found in sheep belong to separate, genetically isolated populations. While we did find mixed infections in cattle, one form clearly dominated. This variety, in turn, was never found in sheep, indicating that the two forms have different host preferences. We also present molecular tools for distinguishing the two varieties, and an analysis of their phylogenetic relationship with the human parasite Strongyloides stercoralis and the major laboratory model species Strongyloides ratti. Based on our findings we propose that Strongyloides from sheep and the predominant Strongyloides from cattle should be considered separate species as it had already been proposed by [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152], but was largely ignored by later authors. For nomenclature, we follow [Brumpt, E., 1921. Recherches sur le determinisme des sexes et de l''evolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des seances et memoires de la Societe de Biologie et de ses filiales 85, 149-152] and use the name S. papillosus for the Strongyloides of sheep and the name Strongyloides vituli for the predominant Strongyloides of cattle.
-
[
PLoS Biol,
2022]
In this issue of PLOS Biology, van Rijnberk and colleagues show how polyploidy, via binucleation, enables Caenorhabditis elegans intestinal cells to ramp up gene expression supplying the oocytes with the necessary lipids for optimal organismal growth and reproductive fitness.