-
[
Virulence,
2012]
Community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) strains have emerged as major human pathogens. CA-MRSA virulence appears to be distinct from healthcare-associated (HA) MRSA with several factors [-hemolysin (Hla), Panton-Valentine leukocidin (PVL), -type phenol soluble modulins (PSM) and SCCmec IV] postulated to enhance virulence or fitness. Using the Caenorhabditis elegans infection model, we compared the virulence of clinical and laboratory isolates of CA-MRSA and HA-MRSA and explored the contribution of CA-MRSA associated virulence factors to nematode killing. All CA-MRSA strains were highly pathogenic to nematodes, while HA-MRSA strains demonstrated variable nematode killing. Nematode killing by isogenic mutants of hla or the loci for PVL, PSM, PSM, PSM or SCCmec IV was not different than the parental strains. These results demonstrate that CA-MRSA is highly virulent, shows some strains of HA-MRSA are equally virulent toward nematodes and suggests CA-MRSA virulence in C. elegans is not linked to a single virulence factor.
-
[
Mol Ther Nucleic Acids,
2016]
Staphylococcus aureus infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, peptide nucleic acids are novel alternatives to traditional antibiotics to tackle the issue of bacterial multidrug resistance. In this study, we designed a peptide nucleic acid covalently conjugated to the HIV-TAT cell penetrating peptide (GRKKKRRQRRRYK) in order to target the RNA polymerase subunit gene (rpoA) required for bacterial genes transcription. We explored the antimicrobial activity of the anti-rpoA construct (peptide nucleic acid-TAT) against methicillin-resistant S. aureus, vancomycin-intermediate S. aureus, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis in pure culture, infected mammalian cell culture, and in an in vivo Caenorhabditis elegans infection model. The anti-rpoA construct led to a concentration-dependent inhibition of bacterial growth (at micromolar concentrations) in vitro and in both infected cell culture and in vivo in C. elegans. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of two important methicillin-resistant S. aureus USA300 toxins (-hemolysin and Panton-Valentine leukocidin). This study confirms that rpoA gene is a potential target for development of novel antisense therapeutics to treat infections caused by methicillin-resistant S. aureus.
-
[
Eur J Clin Microbiol Infect Dis,
2013]
Methicillin-resistant Staphylococcus aureus (MRSA) strains from different geographic areas have different genetic backgrounds, suggesting independent clonal evolutions. To better understand the virulence of MRSA strains and the relationship to their clonal and geographic origins, we undertook an analysis of epidemiologic, molecular, and virulence characteristics of a large number of MRSA isolates from geographically diverse origins, in a Caenorhabditis elegans infection model. A total of 99 MRSA isolates collected between 1993 and 2010 at the Geneva University Hospitals from diverse global origins were characterized with Panton-Valentine leukocidin (PVL), toxic shock syndrome toxin (TSST), accessory gene regulator (agr) group, staphylococcal cassette chromosome mec (SCCmec), S. aureus protein A (spa), multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE) typing. Epidemiologic data were provided from clinical records. The bacterial virulence was tested in a C. elegans host model. The inter-relationships of epidemiological/molecular characteristics in association with nematocidal activities were analyzed with univariate and two-factor analysis of variance (ANOVA). Community-associated MRSA (CA-MRSA) strains were more virulent than hospital-associated MRSA (HA-MRSA), with higher nematocidal activities in CA-MRSA strains (0.776 vs. 0.506, p = 0.0005). All molecular characteristics (PVL, TSST, spa, SCCmec, MLST, and PFGE types) showed a significant association with nematocidal activities on univariate analysis (p < 0.005). PVL was not a significant predictor after adjusting for genomic backgrounds using spa, MLST, or PFGE typing. The dominant CA-MRSA strains in North America showed higher nematocidal activities than strains from other regions (p < 0.0001). Strains with global origins containing distinct genetic backgrounds have different virulence in the C. elegans model. Nematocidal activities were most highly correlated with SCCmec, spa, MLST, and PFGE typing, suggesting that genomic background rather than a single exotoxin characteristic was the most discriminating predictor of virulence.
-
[
Parasitol Res,
2012]
The need for new anthelmintic with no chemical residues is becoming urgent. In a program aiming at the evaluation of plant as sources of new active molecules, the anthelmintic activities of the essential oils (EOs) obtained from either Zanthoxylum zanthoxyloides seeds or Newbouldia laevis leaves were evaluated against Strongyloides ratti by analyzing the results of two in vitro bioassays. These two plants and their tested parts were retained after an ethnopharmacology survey that confirmed their use by small-scale farmers for treatment of small ruminants affected by digestive helminths. The plants were harvested in Benin, and their EO were obtained by hydrodistillation. The EO yield of extraction was 0.65% (w/w) of for Z. zanthoxyloides seeds and 0.05% (w/w) for N. laevis. The chemical compositions of the two EOs were analyzed by gas chromatography coupled with mass spectrometry. The major constituents of the EO from Z. zanthoxyloides consisted of the following compounds: -terpinene (18 %), undecane (15 %), valencene (8.3 %), decanal (8.3 %), and 3-carene (6.7 %). In contrast, the major constituents of the EO from N. laevis leaves consisted of the following compounds: -caryophyllene (36 %) and eugenol (5.8 %). An egg-hatching inhibition (EHI) assay was developed and a larval migration inhibition assay was used on S. ratti to examine the effects of the EOs and to evidence their inhibitory concentrations (IC(50) and IC(90)) values on this nematode. Furthermore, the toxicity of the two EOs on Vero cell line was evaluated. When tested on S. ratti egg hatching, the two EOs resulted in similar IC(50) values (19.5 and 18.2 g/ml for Z. zanthoxyloides and N. laevis, respectively), which were about sevenfold higher than that of the control (thiabendazole, IC(50)=2.5 g/ml). Larval migration was inhibited at similar concentrations for: Z. zanthoxyloides (IC(50)=46 g/ml), N. laevis (IC(50)=51 g/ml), and the control [levamisole (IC(50)=36 g/ml)]. No cytotoxicity was found on Vero cells because both EOs had IC(50) values higher than 50 g/ml. Therefore, we have concluded that the EOs from two plants, used in folk medicine, may contain compounds with anthelmintic activity and could be used as improved traditional medicines or, at least, as food additives in a combined treatment for the control of helminth infections.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.
-
[
J Lab Autom,
2016]
Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.
-
[
Curr Biol,
2017]
The
pha-1 gene of Caenorhabditis elegans was originally heralded as a master regulator of organ differentiation. A new study suggests instead that
pha-1 actually serves no role in development and instead is a component of a selfish genetic element.